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Foreword

Since the first International Symposium on Industrial Robots (ISIR) held in Chicago in 1970, Robotics has ex-

perienced an important evolution and has extended its field from the industrial manufacturing operations to 

different kind of  services useful to the well-being of  humans and equipment like domestic tasks, entertainment, 

handicap assistance, inspection and maintenance, surgery and therapy, and public relations, among many 

others. This is the reason for the change of  the symposium title that becomes, from 1998, International Sympo-

sium on Robotics (ISR).

Despite the high effort done in research and development, important aspects of  robotics, both industrial and 

service, are still open challenges: better control performance, more and more efficient sensors and sensory 

systems, friendly and higher level programming, error recovery, real autonomy, efficient navigation, coordinated 

and networked robots, among others.

The following pages show a sample of  these efforts made by the scientific and technical international commu-

nity to respond to these challenges. More than fifty papers by experts from 11 countries have been selected 

by the International Programme Committee (IPC), made up of  relevant persons from the academic and the 

industrial worlds. The scope of  the papers ranges from robot modeling and control to human robot interaction, 

through topics like planning, robot vision and cognitive robotics.

The ISR has also become the annual mandatory meeting of  industrial and applied oriented people involved 

in robotics and advanced automation. This fact is reflected in the significant number of  papers dealing, for 

instance, with new robot applications, service robotics and aerial robots. In addition to the scientific-technical 

sessions, ISR’09 also offers to the participants several special sessions, not included in this book, dedicated 

to industrial sectors (aerospace, food), successful technology transfers, new and innovative products, and re-

search strategies and funds opportunities in different geographic areas.

For the second time Barcelona, the great Mediterranean city, hosts the ISR (the first time was the 23rd ISIR in 

1992). Now the ISR reaches the 40th symposium of  the series and the Spanish Robotics Association (AER-ATP) 

has the honor and the privilege of  organizing the event and to welcome the robotics community attending the 

ISR’09.

We hope that, in the nowadays difficult economic situation, the 40th ISR will contribute, at least in a modest way, 

to the progress of  our society and the understanding of  the people of  different countries.

Luis Basañez

Raúl Suárez

Jan Rosell

ISR’09 Proceeding Editors
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Map Fusion of Visual Landmark-based
Maps ?

M. Ballesta, O. Reinoso, A. Gil, L. Payá and M. Juliá ∗

∗Dept. of Industrial Systems Engineering, Miguel Hernandez
University, Elche, Spain (e-mail:

m.ballesta|o.reinoso|arturo.gil|lpaya|mjulia@umh.es).

Abstract: In a multi-robot framework, each robot can build its own map independently. In
this situation, the fusion of these local maps into a global one may be necessary. In this paper,
we focus on the study of this problem, i.e., the Map Fusion problem. This task is performed
in two different stages. First, the Map Alignment stage, in which the transformation between
pairs of local maps is computed. Then, in the Map Merging stage, the data from each local map
is fused into a unique map. Particularly, we use the RANSAC method in order to perform the
alignment between maps. Then, in the map merging state, we propose a method that considers
the uncertainty in the estimate of the maps. In these experiments, we use visual landmark-based
maps, which have been built by the robots using the FastSLAM algorithm.

1. INTRODUCTION

Building maps is essential for robots in order to be consid-
ered as autonomous entities. For this reason, the problem
of SLAM (Simultaneous Localization and Mapping) has
received great attention. Some of the most common intro-
ductions to SLAM can be found in (Smith and Cheeseman
[1990], Zunino and Christensen [2001]). The basis of the
SLAM algorithms is that the robot builds its map of
the environment and simultaneously localizes itself in this
map. However, these algorithms differ in the way they
solve this problem. So far, the most common solutions
are based in one of these two approaches: the Extended
Kalman Filter (EKF) or the Rao-Blackwellized particle
filters (denoted with the general term FastSLAM). The
EKF, introduced in (Smith and Cheeseman [1990]), es-
timates an augmented state vector including the robot’s
pose and the localization of the landmarks in the map.
In general, this approach works well in environments with
robust data association and there is a sparse set of land-
marks, which are dispersed in the environment. A recent
and also successful approach is the FastSLAM algorithm,
which was introduced in (Montemerlo et al. [2002]). The
most characteristic aspect of this algorithm is the use of a
particle set which represents the uncertainty of the robot’s
pose whereas each particle has its own associated map.
In this paper, the robots construct their maps using this
approach. The main idea of the FastSLAM algorithm is
to separate the two fundamental aspects of the SLAM
problem: the estimate of the robot’s pose and the estimate
of the map. In this sense, the SLAM problem is divided in
a localization problem and in several individual estimates
of the landmarks. The solution to the SLAM problem is
performed by means of a sampling and particle generation
process, in which the particles whose current observations

? This work was supported by the Spanish Ministry of Science
and Innovation under projects DPI2004-07433-C02-01 and CICYT
DPI2007-61197 and by the Valencian Government under grant
BFPI/2007/096.

do not fit with their associated map are eliminated. The
FastSLAM algorithm has proved to be robust to false data
association and it is able to represent models of non-linear
movements in a reliable way.

We have performed our experiments with Pioneer-P3AT
robots, provided with a STH-MDCS2 stereo head from
Videre Design. Fig.1 shows one of these robots. The use
of cameras can be explained since these devices are less
expensive than other sensors, such as LASER, and offer a
higher amount of information from the environment. This
approach is denoted as visual SLAM (Valls Miro et al.
[2006]). Besides, 3D information is provided when using
stereo cameras. In this paper, the robots navigate through
our building, in which the most common elements are
doors, windows, posters on the walls, etc. The visual maps
built by the robots are landmark-based. This kind of maps
represent the localization of a set of distinctive points from
the environment, referred to a coordinate system. Most
visual SLAM approaches use landmark-based maps (Little
et al. [2002], Gil et al. [2006]). Particularly, in this paper,
the Harris Corner Detector (Harris and Stephens [1998])
is used to detect distinctive points from the environment.
Then these points are described by a feature vector com-
puted with U-SURF (Bay et al. [2006]). This combination
detector-descriptor has been selected after performing a
previous work (Ballesta et al. [2007], Mart́ınez Mozos et al.
[2007]). This feature extractor proved to be the most
suitable under our requirements, i.e. repeatability and
distinctiveness. The maps constructed by the robots using
the FastSLAM algorithm consist of the 3D coordinates of
the Harris points, the uncertainty in the estimate of these
points and their associated descriptor.

The problem of SLAM can be performed by a single
robot. However, in this paper, we focus on the multi-
robot approach. The map building can be performed more
efficiently if a team of robots cooperate in the solution of
this task. The space is divided and the distances traversed
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by each robot will be reduced. Hence the map is finished
in less time and the odometry errors are smaller.

In a multi-robot framework, the robots explore simultane-
ously the environment so that a suitable map can be built
collaboratively. Regarding the estimate of the maps, two
different categories can be established: solutions in which
the robots construct together a unique map (Fenwick
et al. [2002], Thrun [2001]) and solutions in which each
robot constructs its own map independently (Stewart et al.
[2003], Zhou and Roumeliotis [2006]). In the first case, the
robots have a global notion of the unexplored areas, so the
cooperative exploration can be improved. Furthermore, in
the landmark-based case, a landmark can be updated by
different robots. For this reason, the robots do not need
to revisit an area in order to reduce the uncertainty in
the estimate of the landmarks. However, this approach
requires that the initial relative positions of the robots are
known, which is something that is not always possible in
practice. Due to this drawback, in this paper we focuss on
other approach, i.e., the case in which each robot builds its
map independently. One of the main advantages of using
independent local maps, as explained in (Williams [2001]),
is that the data association problem is improved. First,
new observation should only be matched with a limited
number of landmarks in the local maps. Next, when the
local maps are fused into a global map a more robust
association can be performed. In this case, the robots begin
the navigation process having no knowledge about other
robots’ poses and observations.

In a multi-robot system, in which each robot constructs its
own local map independently, the fusion of these maps into
a global one may be necessary. This paper is focused on the
Map Fusion problem. Particularly, we study the two stages
of the Map Fusion problem: Map Alignment and Map
Merging. Regarding the first one, we present a method
to compute the transformation, if existent, between pairs
of local maps. Then, we study the merging stage and fuse
the aligned maps into a single one.

The paper is structured as follows. In Section 2 a brief
description about the Map Fusion problem is presented.
Then, Section 3 focuses on the Map Alignment step. It de-
scribes the RANSAC algorithm and the results obtained.
Analogously, Section 4 presents the experiments performed
in the map merging stage. Finally, in Section 5 the main
conclusions are stated.

2. MAP FUSION

As mentioned before, the fusion of local maps is performed
in two main steps. The first one consists in computing
the transformation, if existent, between the local maps.
This task is denoted as Map Alignment. Then, once the
transformation between maps is known, the second step
is to integrate the data of both maps in order to build a
unique one. This second stage is called Map merging.

The Map alignment problem is solved by computing the
transformation between the local maps, provided that it
exists. In this way, the landmarks of both maps will be
expressed in the same coordinate system. In order to solve
this transformation, some approaches try to compute the
relative poses of the robots. As soon as this measure is

Fig. 1. Pioneer P3AT with a STH-MDCS2 stereo head.

obtained, the alignment of the maps is immediate. In this
sense, the easiest case can be seen in (Thrun [2001]),
where the relative pose between robots is considered as
known. However, a more difficult approach is presented
in (Konolige et al. [2003], Zhou and Roumeliotis [2006]). In
these strategies, a meeting point is arranged by the robots
in order to share information of their maps and compute
their relative poses. Nevertheless, more challenging will be
the approaches in which the robots determinate whether
any alignment exists or not without the need of a meeting
point, but just sharing the information of their maps.
Some authors present feature-based techniques in order
to align maps (Se et al. [2005], Thrun and Liu [2004],
Ko et al. [2003]). The basis of these techniques is to find
matches between the local maps and then to obtain the
transformation between them. In this paper, we propose a
method in order to align landmark-based maps.

The Map merging stage can be performed once the align-
ment has been solved. In (Fox [2005]), though, the com-
bination of local maps is made using spatial constraints,
which can be independent of the coordinate system in
which the constraints are expressed. However, many other
approaches compute the transformation between maps and
determine correspondent parts of the maps before merging
them. In (Thrun and Liu [2004]) they align the maps and
then build a joint map establishing a correspondence list
between both maps. In (Carpin et al. [2005]) they use
occupancy maps and perform the map merging with a
motion planing algorithm in which the local maps are
rotated and translated until similar regions overlap. Then,
in (Lakaemper et al. [2005]), they transform the scanning
data into a map consisting of polylines and then establish
correspondences between similar lines in order to merge
these maps. It is noticeable that establishing a good set
of correspondences between both maps will be decisive to
merge these maps properly. In this paper we describe two
methods to find good correspondences.

3. MAP ALIGNMENT

This section focuses on the computation of the transforma-
tion between pairs of local maps. In a recent work (Ballesta
et al. [2008]), we compared the performance of several
methods to compute the alignment between local maps.
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These methods are suitable for this particular kind of
maps, i.e., landmark-based. All these methods try to es-
tablish correspondences between the detected points in
both maps by means of their descriptor similarity. Then,
different techniques are used in order to compute the
alignment. As a result of this previous work, the RANSAC
algorithm showed the best results in terms of accuracy and
regularity.

In the following subsection, the RANSAC algorithm is
described.

3.1 RANSAC

This technique has been already applied to map alignment
in (Se et al. [2005]). The steps of this algorithm are
described below.

(1) First, a list of possible correspondences is obtained.
Two points are considered as correspondences if the
Euclidean distance between their descriptors is the
minimum and it is below the threshold th0. The co-
ordinates m = (xi, yi, zi) are the landmarks of one of
the maps, and m′ = (x′i, y

′
i, z

′
i) their correspondences

in the other map.
(2) In a second step, two pairs of correspondences are

selected at random from the previous list. These pairs
should satisfy the following geometric constraint:

A2 + C2 ≈ B2 + D2 (1)

where A = (x′i−x′j), B = (y′i−y′j), C = (xi−xj) and
D = (yi − yj). The geometric constraint is satisfied
if |(A2 + C2)− (B2 + D2)| < th1. Then, two pairs of
correspondences are used to compute the alignment
parameters (tx,ty, θ) with the following equations:

tx = xi − x′i cos θ − y′i sin θ (2)

ty = yi − y′i cos θ + x′i sin θ (3)

θ = arctan
BC −AD

AC + BD
(4)

(3) The third step consists in looking for possible corre-
spondences that support the computed transforma-
tion (tx,ty, θ). The sets m and m′ are aligned using
this transformation. Then, if the Euclidean distance
between pairs of correspondences is below the thresh-
old th2, this pair will be considered as a support.
Finally, the second and third step are repeated M
times. The final solution will be the one with the
highest number of supports.

In our experiments, we have selected these values for
the thresholds mentioned above: th0 = 2, th1 = 2 m
and th2 = 0.2 m. Furthermore, a parameter min = 20
establishes the minimum number of supports in order to
validate a solution and M = 70 is the number of times
that steps 2 and 3 are repeated. These are considered as
internal parameters of the algorithm and their values have
been experimentally selected.

Once the alignment parameters (tx,ty, θ) have been com-
puted, the maps can be aligned using the following trans-
formation matrix:

T =




cos θ − sin θ 0 0
sin θ cos θ 0 0

0 0 1 0
tx ty 0 1


 (5)

3.2 Aligning experiments

In this section we present the results obtained with the
RANSAC algorithm described in Section 3.1. Initially,
the robots start from different initial positions and they
have no knowledge about their relative position, so that
they built their maps independently. At some point, the
alignment of the maps may be required. In this sense we
evaluate the performance of the RANSAC algorithm at
different stages of the FastSLAM algorithm. At the begin-
ning there is a sparse number of landmarks in the maps,
and therefore the alignment is unlikely to be correctly
computed. However, as the size of these maps increases,
more correspondences between the maps will be found.
In this situation, it is expected that the alignment is
performed successfully.

Our experiments have been performed with maps built
independently by means of the FastSLAM algorithm, using
real observations from the environment. The FastSLAM
algorithm is performed in several iterations according to
the number of movements made by the robots. In our
experiments, k is an index that denotes the iteration order.
Figure 2 presents the results of the alignment performed
by RANSAC in the different iterations of the FastSLAM
algorithm. In all these cases, the alignment is performed
using the most probable particle of the FastSLAM algo-
rithm. Particularly, the error in the estimate of the align-
ment parameters (tx, ty and θ) is represented in y-axis.
The error in tx and ty is expressed in meters and the
error of θ in radians. The k-iteration of the FastSLAM
algorithm is shown in the x-axis. The error in the estimate
of the alignment parameters is computed as the Euclidean
Distance between each parameter and a relative measure,
denoted as Ground Truth. This measure has been obtained
after calibrating the relative position of the robots being
at their respective initial positions. These initial positions
are the origin of the local reference frame of each robot. In
the figure, it can be observed that the error in the tx and
θ parameters is always below 0.2 m or rad respectively.
On the other hand, it can be deduced that the estimate of
the ty parameter is the most critical. This phenomenon
is due to the fact that the robot moves forward along
the y-direction most of time so that the uncertainty when
observing features in this direction may be higher. Any-
way, the results obtained with RANSAC are considerably
accurate and therefore it is a suitable algorithm for this
kind of maps.

Figure 3 shows a 2D view of an alignment performed
with RANSAC. The maps illustrated in this figure are
3D landmark-based. Figure 3(a) presents the local maps
(map1 and map2) referred to the relative reference frame
of each robot, which is located in their origin. Both maps
have some common landmarks which have been found by
the RANSAC algorithm. In this figure, some correspon-
dent points are indicated. Then, the aligning parameters
tx, ty and θ are computed with RANSAC. The result is
presented in Figure 3(b), where both maps have been
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Fig. 2. Error values in the alignment parameters obtained
with the RANSAC algorithm.

aligned. These maps have been obtained after performing
the FastSLAM algorithm completely. The dimension of
these maps is 35× 10 meters approximately and their size
is map1 = 263 landmarks and map2 = 364 landmarks.

4. MAP MERGING

Once the alignment between two local maps has been
computed, the next step is to fuse this data in order to
construct a unique map. In this sense, it is important to
consider the uncertainty in the estimate of the landmarks
performed by each robot independently. The data to be
merged is the part that the local maps have in common
and that satisfies the alignment computed previously.
Particularly, the data we should merge consists of the 3D
coordinates of the landmarks (x, y, z), their corresponding
uncertainty, which is a 3 × 3 covariance matrix, and the
descriptor associated to each landmark. Due to the nature
of this data (3D variables having uncertainty), we have
considered that the most suitable method in order to solve
this problem is a Multivariable Stationary Kalman Filter.
The following formulation has been used to merge the
landmarks of map1 and map2 (Fig.3):

Kalman gain : K{i} = cov1{i} · (cov1{i} + cov2{i})−1 (6)

Global coord. : CG{i} = C1{i} + K{i} · (C1{i} − C2{i}) (7)

Global uncertainty : covG{i} = (I −K{i}) · C1{i} (8)

where i is an index (i ∈ {1, N}) that denotes each matched
landmark. N is the total number of matched landmarks
between both maps (1 and 2).The G subindex denotes the
data of the global map (mapG) and the 1 and 2 subindexes
belong to the data of map1 and map2 respectively. Conse-
quently, CG{i} indicates the 3D coordinates of landmark
i in the global map. This landmark is the result of match-
ing and merging a common landmark between both local
maps, map1 and map2. C2 denotes the 3D coordinates of
map2 expressed in the map1’s reference system (i.e. after
the alignment process). Finally, covG/1/2 are the 3 × 3
covariance matrices, which represent the uncertainty in
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Fig. 3. Map alignment (2D view). Fig. 3(a) shows the local
maps before the alignment. Fig. 3(b) shows the same
maps after the alignment.

the location of the landmarks in mapG, map1 and map2

respectively.

Additionally, each landmark belonging to map1 or map2

has its own associated descriptor. When we match a
common landmark between these local maps, and then
merge it, the descriptor in the global map will be the mean
between the descriptors in the local maps.

4.1 Merging experiments

After estimating the alignment parameters tx, ty and θ, the
fusion of the maps can be performed. The only requirement
is to find the set of landmarks that are common in both
maps. The total number of common landmarks is what we
have denoted as N in Section 4. The resulting mapG is
the union between map1 and map2, having been merged
the N common landmarks of these maps. The rest of
landmarks that belong exclusively to each map remain in
their original form. In order to compute the set of common
landmarks, we have test the two different methods that are
described in the following.
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Fig. 5. 2D view of mapG. This map has been built after
merging the data of map1 and map2 (Fig.3)

(1) Method 1. Supports of the RANSAC algorithm.
One possibility is to consider the supports obtained
with the RANSAC solution as the set of common
landmarks. As described in Section 3.1, the supports
are those correspondences between both maps that
satisfy the alignment parameters. These points are
geometrically close and also have a similar descriptor.

(2) Method 2. New set of correspondences. In this
case, having the alignment parameters, the set of cor-
respondences is obtained from the local map of each
robot. The only similarity measure is the distance
(in position) between pairs of correspondences. The
Euclidean distance is used to compute this similarity.

In Figure 4, the results of the previous methods are
shown. Particularly, for each method, the parameter N is
presented, i.e., the number of common landmarks between
both maps. Method 2 is less restrictive and therefore
it obtains a higher number of common landmarks, as
can be deduced from the figure. Unfortunately, some of
these correspondences may be wrong, since their descriptor
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Fig. 6. 3D view of mapG. This map has been built after
merging the data of map1 and map2 (Fig.3)

similarity has not been tested. For this reason, this method
is not suitable for these experiments. As a consequence, we
have performed our experiments using Method 1.

In Figures 5 and 6 the final result of a merged map is
presented. Figure 5 presents the 2D view of the merged
maps and in Figure 6 the fused map is shown in 3D.
In this case, the z component of the landmarks varies
from 0 to 2 m approximately, since these points have been
extracted from the walls of our building. This fused map
(mapG) is the result of merging the data from the maps of
Fig. 3(a). For that reason, it is noticeable that Figure 5 is
similar to Figure 3(a), with the difference that the maps
in Figure 3(a) are only overlapped whereas in Figure 5 the
maps have been merged. The non-common parts of each
map are also represented.

5. CONCLUSIONS

The main purpose of this paper was to study the Map
Fusion problem in a visual SLAM framework. The robots
use the FastSLAM algorithm in order to build their maps
by extracting distinctive features from the environment.
These features consist of 3D points extracted by the Harris
Corner Detector and described by U-SURF. In order to
tackle the fusion of this kind of maps, we have divided
the problem in two main stages: Map Alignment and Map
Merging. In the first case, the RANSAC algorithm has
been selected to compute the alignment between these
landmark-based maps by matching common landmarks
between them. This method has shown accurate results
at different iterations of the FastSLAM algorithm, i.e.,
having different sizes of the overlapping area. Then, in
the map merging step, two methods have been tested
in order to establish a reliable set of correspondences
between maps so that the fused map can be successfully
obtained. The method used to merge these maps is based
on a Multivariable Stationary Kalman Filter. This method
considers the uncertainty in the estimate of the landmarks,
which is different for each robot.
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Abstract: This paper describes an extension of the well-known Iterative Closest Point (ICP) algorithm for 

solving problems such as Data Registration, Scan Matching, etc. In the standard ICP, the association uses 

the “closest point” rule, while, in the proposed extended ICP algorithm (eICP), N points are associated to 

any of the infinite points of a continuous curve defined by the other N points. This can be implemented by 

adding new degrees of freedom so the points can “freely” move on the continuous curve. Thus, we 

transform the original N to N correspondence problem of associating N points from one data set to N 

points of the other data set into a problem of associating N points with infinite possible points of the 

continuous curve. In addition to this, it is shown that the performance index to minimize in this new 

approach is independent from rotation and translation between the two scans, which avoids typical 

problems derived from the “closest point” rule. Moreover, this higher flexibility requires solving an N-

dimensional optimization problem that doesn’t increases the computational cost with respect to the 

standard ICP, even for local or global search procedures. Furthermore, the convergence of the new 

algorithm can be improved by considering heuristic constrains such as preserving distances in the 

association process. In this sense, a constrained optimization solution that assumes preservation of  

distances between points (like a rigid mesh) is presented. This restriction transforms the N-dimensional 

optimization problem into a one-dimensional problem. 

1. INTRODUCTION 

Matching methods have been extensively studied in the past. 

There exist two different types of matching methods, where 

the main difference lies on the assumption of structured 

environments, i.e: environment with corners, lines, etc. or the 

assumption of a generic environment (non-structured). 

In general, the structured matching techniques have proved to 

be very useful in indoor environments, where the structured 

assumption is perfectly granted. In such as situations, these 

techniques are faster and even could be more accurate than 

generic ones. 

In general, structured matching techniques that consider this 

assumption perform a feature extraction step previous to the 

matching step. For instance, in SLAM techniques for 

Computer Vision it is very common to process corners, i.e.: 

with Harris Corner Detector (Harris & Stephens, 1988), and 

then match them by correlation in order to solve the SLAM 

problem, see i.e.: (Gemeiner. et.al., 2006), (Armesto, et. al., 

2007), (Montiel, et. al., 2006). 

Other approaches assume features that can be extracted from 

readings such points, lines or circles (Araujo and Aldon, 

2004), (Chernov and Lesort, 2003), (Pfister and Roumeliotis, 

2003). Several methods have been proposed to compute the 

pose of a mobile robot under such as conditions (Araujo and 

Aldon, 2002), (Betke and Gurvits, 1997), (Armesto, et. al., 

2008), (Cohen and Koss, 1992), commonly known as 

triangulation, trilateration, etc. 

On the other hand, there is a group of techniques that doesn't 

assume such as structured environment. In general, these 

techniques are based on an iterative process that estimates the 

relative pose that gets a better superposition. 

Tools for these approaches are either probabilistic (Censi, 

2006, Montesano, et. al. 2005) or geometric (Besl and 

McKay 1992), (Lu and Milios, 1997) and (Minguez and 

Montesano, 2006). 

The main contribution of this paper is to take advantage of 

the continuous nature of the environment, that is, we assume 

that the environment is defined by a finite number of 

continuous elements and solve the Data Registration problem 

under such as assumption. 

 

 

Fig. 1. The free movement of the points let us introduce mode 

DOF to obtain better estimations. 
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