
1

MinkUNeXt: Point Cloud-based Large-scale Place
Recognition using 3D Sparse Convolutions

J.J. Cabrera1, A. Santo1,2, A. Gil1, C. Viegas3 and L. Payá1

Abstract—This paper presents MinkUNeXt, an effective and
efficient architecture for place-recognition from point clouds
entirely based on the new 3D MinkNeXt Block, a residual block
composed of 3D sparse convolutions that follows the philosophy
established by recent Transformers but purely using simple 3D
convolutions. Feature extraction is performed at different scales
by a U-Net encoder-decoder network and the feature aggregation
of those features into a single descriptor is carried out by a
Generalized Mean Pooling (GeM). The proposed architecture
demonstrates that it is possible to surpass the current state-of-
the-art by only relying on conventional 3D sparse convolutions
without making use of more complex and sophisticated proposals
such as Transformers, Attention-Layers or Deformable Convo-
lutions. A thorough assessment of the proposal has been carried
out using the Oxford RobotCar and the In-house datasets. As a
result, MinkUNeXt proves to outperform other methods in the
state-of-the-art.

Index Terms—Place Recognition, LiDAR, Point cloud embed-
ding, 3D Sparse Convolutions

I. INTRODUCTION

IN many applications, mobile robots must perform au-
tonomous navigation in a specific environment. As it

moves, the robot should be able to recognize or identify
different areas of the environment. This action is equivalent
to finding a correspondence between its current sensor ob-
servations and a part of the stored database. This ability is
commonly denoted as place recognition. In order to speed this
process, frequently, authors have concentrated on describing
some parts of the environment by means of an invariant
descriptor. In this way, the robot should be able to recognize
a part of the environment by finding the descriptor in the
database that most ressembles the descriptor associated to its
current observations. The concept of place recognition is of
uttermost importance in tasks such as localization, mapping
and navigation.

Place recognition and robot localization are two closely
related concepts. Place recognition centers on the descrip-
tion of the current robot observations in a way that allows
the robot to identify different locations in the map. Thus,
place recognition focuses on the extraction and codification
of relevant features found in the robot query observation in

1Institute for Engineering Research (I3E) Email: {juan.cabreram, a.santo,
arturo.gil, lpaya}@umh.es

2Valencian Graduate School and Research Network for Artificial Intelli-
gence.

3Univ of Coimbra, ADAI, Department of Mechanical Engineering, Rua
Luı́s Reis Santos, Pólo II, 3030-788 Coimbra, Portugal. Email: car-
los.viegas@uc.pt

979-8-3503-0704-7/23/$31.00 ©2023 European Union

Fig. 1. Point cloud-based place recognition. Each query point cloud (red) is
embedded into a global descriptor which is compared with the descriptors
from the database point clouds (blue) by means of a Nearest Neighbour
Search.

such a way that they can be compared to previously stored
data (Fig. 1). Similarly, robot localization refers to the act of
estimating the position and orientation of the robot within a
known map. In this way, given a map of the robot, conformed
by a series of submaps, a common process to carry out the
global localization of the robot could consist of two phases [1]:
a) rapidly finding a submap within the global database using
the feature descriptors (place recognition) and b) performing
a fine estimation of the position and orientation of the robot
in that submap (robot localization). A similar technique is
proposed in [2], where the descriptor is computed from LiDAR
measurements. Next, a handcrafted descriptor is employed to
rapidly retrieve some areas of interest in the map. The final
localization step, based on the ICP (Iterative Closest Point)
algorithm is able to compute the position and orientation
within the submap.

To date, place recognition has been performed with different
types of sensors: visual cameras [3], laser [4], LiDAR [5] and
Radar [6] using different types of techniques. For example,
place recognition has been extensively solved by means of
techniques based on the Bag of Words algorithm using images
[7], [8].

During the last few years LiDAR sensors have lowered in

2

price and weight, while increasing in resolution. Therefore,
LiDAR sensors permit obtaining a large number of precise
measurements from the environment that define its shape and
structure. Being a self-illuminated sensor, it is insensitive to
changes in natural light, thus directly applicable to outdoor
applications. In consequence, several new potential applica-
tions of LiDAR sensors in the area of mobile robotics have
emerged and it is therefore necessary to focus on methods that
achieve a robust description of the scene. In the literature, so
far, we can find: a) Classical techniques based on a handcrafted
description of LiDAR data to generate rotationally invariant
representations [2], [9] and b) Descriptions based on the use
of Deep Neural Networks, either operating directly on the
coordinates of the points [10] or on the projection of the points
to image coordinates [11].

In this manuscript a technique for the robust description of
scenes captured by a LiDAR sensor based on the use of a
Deep Neural Network is presented. Several improvements and
modifications are proposed starting from the basis of several
recent architectures. As a result, the proposed network is able
to outperform all other existing methods in the context of place
recognition. In summary, the main contributions of this paper
are:

• MinkUNeXt: A new 3D Sparse Convolutional Neural
Network for Place-Recognition. It is the first approach
of a U-Net architecture for point cloud embedding and
place-recognition. The architecture has been specifically
developed and optimized for this problem. In addition,
substantial improvements have been achieved both in
terms of macro and micro design.

• The definition of a new residual block: the 3D MinkNext
Block, which is entirely composed of 3D sparse convo-
lutions and surpasses the performance of ResNet Blocks.
It follows the philosophy proposed by ConvNeXt [12],
which uses standard convolutions and was originally
proposed for image classification, semantic segmentation
and object detection.

As a result, the proposed topology is able to surpass
significantly the current state of the art of point cloud place-
recognition in terms of average recall at 1 (AR@1) and average
recall at 1% (AR@1%), when compared to the most relevant
methods in the literature.

The rest of the paper is organized as follows: Next, Sec-
tion II deepens in the state of the art in relation with the use
of Deep Neural Networks for the description of the structure
of point clouds. After that, Section III defines in detail the
proposed architecture to describe the point clouds. Next,
Section IV describes the datasets, experiments and results.
Finally, Section V presents the main conclusions.

II. STATE OF THE ART

This section offers a comprehensive overview of the current
state-of-the-art in place recognition, specifically exploring the
utilization of Deep Neural Networks with point cloud data.

Many applications have emerged that concentrate on place
recognition based on point clouds. In this section the methods
are presented chronologically. In addition, in this manuscript a
comparison of the main results achieved by the most relevant
architectures is provided. In this context, the first approach to
this task was tackled in [10] with PointNetVLAD, a network
model based on PointNet [13] for feature extraction followed
by a NetVLAD layer for feature aggregation. The point clouds
taken as input by this type of architectures do not need to be
sorted, as they use symmetric functions such as Multi Layer
Perceptron (MLP) or Fully Connected layers. Next, a similar
approach, named LPD-Net [14] improved the state of the art by
incorporating a local feature extraction block at the beginning
of the network and a subsequent graph-based neighbourhood
aggregation.

After that, the MinkLoc3D architecture emerged [15]. It is
based on a Feature Pyramid Network (FPN) with Sparse Con-
volutions for feature extraction [16], followed by a Generalized
Mean Pooling (GeM) for the aggregation of the features into
a single vector [17]. At that time, the MinkLoc3D architecture
marked a significant milestone, as it significantly surpassed the
existing state-of-the-art methods and also demonstrated that
the use of 3D convolutional layers was a good choice for
feature extraction from point clouds. Unlike previous network
typologies, when using 3D convolutions, they do require a
sorted point cloud as input, where the spatial relationships
between points are preserved. The same situation occurs in
an analogous way with images, where 2D convolutions have
proven to be very efficient in feature extraction thanks to
the neighbourhood relationships between pixels. In this sense,
some 2D architectures have also emerged taking as input the
projected point cloud into a spherical image (OverlapNet [11]).
Other works, such as [1] propose creating a rotation-invariant
handcrafted image: from a polar coordinate representation of
the point cloud, the 2D distance between consecutive points
belonging to the same elevation angle (ring) is computed
and then, a histogram per ring is obtained generating a 2D
handcrafted codification of the point cloud.

In addition, both monocular images and point clouds are
used simultaneously by some architectures (MinkLoc++ [18],
PIC-Net [19]). In this case, both architectures are formed by
two branches, processing independently the image and the
point cloud. Each branch results in a feature vector and both
vectors are finally aggregated into a single vector by a pooling
process. Alternatively, each point can be associated with a
feature corresponding to the RGB value of the image [20]. This
requires a precise calibration of the camera-LiDAR system.
Otherwise, some authors propose to use the relative intensity
returned by each LiDAR ray, referred to as MinkLoc-SI [21].

The DAGC architecture [22] was the first to introduce
self-attention layers [23] for point cloud feature extraction
to perform place recognition. Later, other authors continued
the use of attention layers, obtaining results close to the state
of the art. In this sense, NDT-Transformer was presented

3

32 32

32 32

64 64
128 128

256 192
192 192

192 192

128 512

3D Sparse

Convolution

BN + ReLU MinkNext

Block

3D Sparse

Transpose

Convolution

Fully Connected GeM pool

Fig. 2. This diagram shows the architecture of the proposed MinkUNeXt, which is based on a semantic segmentation network (U-Net) modified and enhanced
to perform place-recognition from point clouds.

[24], a network model based on 3 Transformer Encoders that
takes as input a modified point cloud by using a Normal
Distribution Transform (NDT). This approach preserves the
geometrical shape of the point cloud while decreasing the
memory complexity.

Simultaneously, PPT-Net [25], a Transformer with a pyrami-
dal distribution followed by a NetVLAD layer, emerged. Based
on a similar idea, SOE-Net [26] extracts local features using
a series of MLPs and subsequently, it applies attention layers
in the aggregation of those features. In addition, the Retriever
[27] network also introduces self-attention layers within an
autoencoder to perform local feature aggregation. Besides,
looking for efficiency and the use of these architectures in real
localization systems (which must work in real time), SVT-
Net, an efficient Sparse Voxel Transformer based on sparse
convolutional layers for feature extraction, was presented in
[28].

Furthermore, HiTPR [29] employs Farthest Point Sampling
[30] to reduce the dimensionality of the input cloud while
preserving its original topological information. In addition,
this work introduces a Transformer block for short-range local
feature extraction and an additional Transformer block for
extracting global information over long distances. The men-
tioned Transformer-based approaches presented similar results
to those found in the state of the art. However, the presentation
of TransLoc3D [31] constituted a significant advance. It is a
network model also based on sparse convolutions but unlike
other proposals, it extracts features at different scales in paral-
lel by means of convolutional layers with different kernel size.
In addition, it also employs ECA (Efficient Channel Attention)
layers [32] in order to interact local features from different
channels. This type of layers are also used by MinkLoc3Dv2
[5], an architecture based on MinkLoc3D [15]. MinkLoc3Dv2

includes the use of ECAs with an increased number of planes
or channels (depth of the convolution matrices). To date, this
network architecture shows the best results in terms of average
recall at 1 (AR@1) in the Oxford RobotCar Dataset [33],
partly due to the loss function they introduce in the training
process and the high batch size with which they train.

Finally, the best result in terms of average recall at 1%
(AR@1%) was obtained by KPPR [34], a network model
based on Flexible and Deformable Convolutions (KPConv
[35]). However, Minkloc3Dv2 is still ahead in terms of average
recall at 1 (AR@1), which is a more demanding metric.
Additional architectures have been proposed to date, making
other types of contributions such as rotation invariance E2PN-
GeM [36] and RPR-Net [37] or inference efficiency EPC-Net
[38] and BPT [39].

This paper presents MinkUNeXt, an architecture based on
MinkUNet [16] modified and enhanced to perform place-
recognition from point clouds. It is an encoder-decoder archi-
tecture entirely based on the proposed 3D MinkNeXt Block,
a residual block composed of 3D sparse convolutions that
follows the philosophy proposed by ConvNeXt [12]. The
feature extraction is performed by the U-Net encoder-decoder
and the feature aggregation of those features into a single
descriptor is carried out by a Generalized Mean Pooling (GeM)
[40]. The proposed architecture demonstrates that it is possible
to surpass the current state of the art by only relying on
conventional 3D sparse convolutions without making use of
more complex and sophisticated frameworks such as Trans-
formers, Attention-Layers or Deformable Convolutions. In this
way, this paper shows that the proposed architecture outputs
results which are superior to those found in the literature while
maintaining the efficiency, scalability and performance.

4

III. MINKUNEXT: GLOBAL POINT CLOUD DESCRIPTOR
FOR PLACE RECOGNITION

Place recognition from point clouds can be approached as
an embedding task. For this purpose, it is desirable to have an
architecture capable of extracting the more descriptive features
of the scene and, in addition, aggregating them into a single
vector that most generally describes the information present
in the scene. The present work presents a pioneering solution
that employs a U-Net architecture [41] in the context of
place recognition. Most architectures resembling U-Net were
originally designed for semantic segmentation, where the goal
is to assign a category to each pixel of an input image, or in
this case, to each point of the input point cloud. However, the
encoder-decoder topology of a U-Net is also capable to extract
and fuse relevant features from the scene as will be shown in
the experimental section.

A. Global Architecture

The proposed model is fed by a point cloud given as an
unordered set of 3D coordinates P = {(xi, yi, zi)}. This
point cloud is quantized into a sparse tensor, which is a
high-dimensional extension of a sparse matrix where non-zero
elements are represented as a set of indices C (coordinates)
and associated values (or features) F . Some papers [14],
[24] propose to employ as feature some handcrafted attributes
such as the vertical component of the normal vector, height
variance, change of curvature or just the value of the coordi-
nates. Others [5], [15] prefer initializating each coordinate’s
feature to one, i.e., the first convolution (stem) will only
take as input features ‘ones’ for the non-empty voxels. This
idea is also taken in the present paper, where the input data
P̂ = {(x̂i, ŷi, ẑi, 1)} is conformed by C, a set of 3D quantized
coordinates and F , a vector of ‘ones’ whose length is equal
to the number of quantized points.

The global architecture is represented in Fig. 2. The en-
coder of the network consists of five 3D Sparse Convolutions
(coloured in yellow). Among them, the stem is the first
convolution and it preserves the input dimension of the point
cloud since its stride is fixed to 1 and the kernel size is 5. While
each of the following four convolutions gradually decrease the
spatial dimension, the receptive field increases since successive
convolutional layers capture larger and larger patterns by
combining information from previous layers. Each of those
convolutions downsample its input dimension by 2 since they
employ both kernel size and stride of 2. After the encoder, the
dimension of the input point cloud is downsampled by 32.

In a common U-Net the decoder is composed of four
3D Sparse Transpose Convolutions that upsample the spa-
tial dimension by 2, progressively reconstructing the input
cloud. However, in this architecture it is proposed to partially
reconstruct the input point cloud by only applying three
transpose convolutions (coloured in orange), since our purpose
is point cloud embedding and not semantic segmentation.
Subsection IV-E will justify that features extracted with only
three transpose convolutions are more robust for understanding

the overall context of the scene. Furthermore, a Batch Normal-
ization and a ReLU activation function (coloured in red) are
applied after all the convolutions, which helps in stabilizing the
training process. In addition, in this architecture it is proposed
to employ the presented Residual MinkNeXt Block (coloured
in blue) instead of the common ResNet Block after each ReLU
(without taking into account the one corresponding to the
stem). This kind of residual blocks provide a direct path for
gradients to flow through the network, reducing overfitting and
boosting the generalization capabilities on unseen data. In this
architecture, it is also used to increase the number of features
maps as it will further detailed in the following subsection
III-B.

The U-Net architecture is characterized for having skip
connections between the encoder and the decoder. On the
one hand, the encoder would capture features at different
spatial scales, from fine details (low-level) to more global
structures (high-level) present in point clouds. On the other
hand, thanks to the skip connections, the decoder would
fuse the low-level and high-level features. After that, a Fully
Connected Layer is added since it outputs features have been
proven to perform robustly against viewpoint changes in visual
place recognition [42]. Furthermore, this Fully Connected
Layer is also employed to extend the feature maps up to a
dimensionality of 512. Subsequently, the points descriptors
that conform that feature map are aggregated into a single
global descriptor by a Generalized Mean Pooling (GeM) [40].

B. Residual Block Architecture

As mentioned before, in this paper both a global and a
residual block architecture are proposed. In this sense, a new
residual block is designed (Fig. 3) which is entirely com-
posed of 3D Sparse Convolutions and follows the philosophy
proposed by ConvNeXt [12], surpassing the performance of
ResNet Blocks. We have named this block MinkNeXt, since it
takes advantage of the ResNet blocks and is fully implemented
in Minkowski Engine [16].

In the global architecture (Fig. 2), the proposed residual
block appears in blue colour after each ReLU activation
function (except for the one corresponding to the stem).
Since the residual block is generally employed to increase
the number of features maps, the stem of the residual block
is formed by a 1x1x1 convolution that widens the input
dimension to the output channels size. After that, an inverted
bottleneck is applied by expanding the dimension four times
and then reducing it again to the output dimension through
two 3D Sparse Convolutions. This inverted bottleneck was
originally proposed by MobileNetV2 [43] and nowadays, it is
an important design in every Transformer block. In addition, a
1x1x1 Convolution in the residual connection is also applied
when the input and the output dimensions differ.

The activation function employed in this block is the
Gaussian Error Linear Unit (GeLU) [44], which is smoother
than ReLU and is utilized in the most advanced Transformers.

5

Finally, the normalization is carried out by LayerNorms [45]
in the main stream of the block and by BatchNorms [46] in
the residual connection.

Fig. 3. This diagram shows the proposed MinkNeXt Block. This residual
block is an essential part of the global network, since increases the number
of feature maps through an inverted bottleneck.

IV. EXPERIMENTS

This section describes the datasets (Subsection IV-A), the
labelling (Subsection IV-B) and the training and evaluation
of the proposed architecture (Subsection IV-C). Later, the
implementation details are described in Subsection IV-D. Sub-
sequently, in Subsection IV-E, we present an ablation study of
the designing steps carried out to obtain the final architecture.
Finally, the main results are compared with other approaches
in the literature in Subsection IV-F.

A. Datasets

In order to train and evaluate the proposed method, the
datasets and evaluation protocols introduced in [10] have been
used. This is a common framework employed and respected
by a large number of studies that is used to compare different
proposals that address the place recognition task using point
clouds. The benchmark consists of 2 datasets and 4 different
environments:

• The Oxford RobotCar Dataset [33]. This dataset is gen-
erated using some SICK LMS-151 2D sensors mounted
on a car. The dataset covers a 10 km trajectory along
the city of Oxford. In total, 44 sequences of the same
trajectory which are geographically divided into training
(70%) and test (30%) are used. This results in 21,711
training submaps and 3,030 test submaps.

• The In-house Dataset [10]. This dataset consists of
three different environments: a University Sector (U.S.),
a Residential Area (R.A.), and a Business District (B.D.).
These datasets are captured using a Velodyne-64 LiDAR
mounted on a motorized vehicle that covers each of the
three regions. The paths lengths are 10 km, 8 km and 5
km respectively. It is conformed by 5 different sequences
from each of the U.S., R.A. and B.D. regions, which
were captured at different times. In addition, each U.S.
and R.A. sequence are geographically divided into train

and test. While the B.D. environment is only used for
testing.

In both datasets, the LiDAR scans are taken at regular
intervals of 12.5 m and 25 m for the training and test set,
respectively. Also, both datasets are formed by a number of
submaps. Each submap is constructed by capturing LiDAR
scans consecutively along 20 m. Next, the scans are registered
in a common frame and further processed to create a consistent
submap. Each of these training and test submaps are filtered
by removing the ground plane and also regularly sampled by
a voxel grid filter in order to reduce its size to 4096 points.
The XYZ coordinates of the points that constitute each point
cloud are then shifted and scaled in order to obtain a point
distribution with zero mean in the [-1, 1] range for each
coordinate.

B. Labelling and similarity

Each submap in the dataset is tagged with the UTM
coordinates of its respective centroid. This constitutes the
identifier of each submap and is later used during the training
and evaluation of the network. Next, we define the similarity
between the submaps in the datasets. This concept is generally
denoted as labelling in the literature and it is important
because it is necessary to feed the model with structurally
similar submaps captured from the same place and structurally
dissimilar submaps from different places. In this sense, most of
the proposed labelling protocols are based on the Euclidean
distance of the UTM coordinates from which point clouds
are captured (two point clouds are considered structurally
similar if they are captured within a distance p and structurally
different if they are taken from a distance greater than n where
p < n). This procedure, of course, is a coarse approximation
that assumes that submaps captured from the same area will
possess a similar structure. However, it is a simple but effective
manner of labelling the training data. In this paper, this method
is adopted with p = 10m and n = 50m as in the majority
of the referred manuscripts. Authors, have also proposed
other methods for similarity labelling in the context of place-
recognition. For example, [11] proposes to use the overlap
between point clouds as an alternative method for labelling
similar and dissimilar point clouds. In order to compute the
overlap between two point clouds (i.e. submaps) a precise
registration must be carried out, which hinders the application
of this technique to large datasets.

C. Training and evaluation

As for the training and evaluation of the proposed method,
the two evaluation protocols established in [10] have been
followed:

• The first, baseline protocol, consists in training the model
only with the Oxford training data and evaluating with the
Oxford and In-house (U.S., R.A. and B.D.) test data.

• The second, refined protocol, consists in training with
Oxford and In-house (U.S., R.A.) training data and evalu-
ating with the Oxford and In-house (U.S., R.A. and B.D.)
test data.

6

TABLE I
NUMBER OF TRAINING AND TESTING SUBMAPS FOR THE BASELINE AND

REFINED PROTOCOLS.

Baseline Protocol Refined Protocol
Training Test Training Test

Oxford 21.7k 3.0k 21.7k 3.0k
In-house - 4.5k 6.7k 1.7k

Table I summarizes the number of training and testing
submaps corresponding to each dataset and each of the pro-
tocols defined above. The assessment of the LiDAR-based
place recognition descriptors is carried out by means of the
recall rate at top-K candidates. Following the most common
evaluation methods (as in the manuscripts cited in Section
II), the average recall at 1 (AR@1) and average recall at
1% (AR@1%) are used in order to ease the comparison with
other techniques. We start with a “query submap” formed by
a point cloud which is taken from the test dataset and point
clouds submaps from different traversals that cover the same
region from the map. Each query submap is processed by the
network and it outputs, as a result, a descriptor vector that
codifies its appearance. This descriptor is referred to as the
“query descriptor”. Next, the query descriptor is compared
to all the descriptors in the map. The point cloud in the
database that minimizes the distance is selected. Finally, the
place recognition is considered to be successful if the query
and the retrieved point cloud are within an Euclidean distance
of 25 m.

D. Implementation details

In the present work the proposed model is trained following
the procedure established in [5]. In this regard, the Truncated
Smooth-AP (TSAP) loss function is employed, which tries to
maximize the ranking of the positive top-k candidates:

LTSAP =
1

b

b∑
q=1

(1−APq) (1)

Where b is the batch size and APq is the smooth average
precision:

APq =
1

|P |
∑
i∈P

1 +
∑

j∈P,j ̸=i G(d(q, i)− d(q, j); τ)

1 +
∑

j∈Ω,j ̸=i G(d(q, i)− d(q, j); τ)
(2)

Given a query point cloud q, the average precision APq

is computed from the set of k closest candidates P (pos-
itives) and the set of all positives and negatives Ω. Also,
the function G constitutes a Sigmoid function G(x; τ) =(
1 + exp

(
−x

τ

))−1
with a parameter τ that controls the

sharpness. The term d(q, i) represents the Euclidean distance
between the descriptor of a query point cloud q and the i-
th point cloud. The numerator represents a soft ranking of a
positive point i among the top k positives (where k = 4),
while the denominator represents a soft ranking of a positive
point i among all other positives and negatives.

For the correct performance of this type of loss function, it
is necessary to train with a high batch size, specifically a size

TABLE II
TRAINING PARAMETERS IN BASELINE AND REFINED PROTOCOLS

Parameter Baseline Refined

Batch Size (b) 2048 2048
Number of Epochs 400 500
Initial Learning Rate 1× 10−3 1× 10−3

LR Scheduler Steps 250, 350 350, 450
L2 Weight Decay 1× 10−4 1× 10−4

Sigmoid Temperature (τ) 0.01 0.01
Positives per Query (k) 4 4
Quantization Scale (qs) 0.01 0.01

of 2048 has been used with 400 and 500 training epochs for the
baseline and refined protocol, respectively. The optimizer used
to minimize the loss function is Adam with an Initial Learning
Rate of 1e-3 and it is divided by 10 in the epochs given by the
LR scheduler steps, which are epochs 250 and 350 for baseline
protocol and epochs 350 and 450 for refined protocol. Table
II summarizes all the parameter values described above.

Additionally, when working with sparse convolutions, the
input point clouds need to be quantized by a factor of qs,
which is set to 0.01. Since these clouds are already normalized
to [-1, 1], spatial resolutions of 200 voxels are obtained on
each coordinate axis. To increase the number of training
instances and reduce model overfitting, a data augmentation
has been carried out by applying a random jitter of a value
between [0, 0.001] individually to each point of the point
cloud, a random transformation to the global point cloud with
a value between [0, 0.01] and a random removal of 10% of
the points.

All experiments are carried out on a NVIDIA GeForce
RTX 3090 GPU with 24 GB. Our code is publicly
available on the project website https://github.com/juanjo-
cabrera/MinkUNeXt.git.

E. Ablation study: From MinkUNet to MinkUNeXt

The design departs from the MinkUNet34C architecture
[16] as a baseline. Next, the series of design decisions are
described. Each design step is summarized in two main
subsections: (1) global design and (2) residual block design,
which are included next. For every step, both the procedure
and the results are presented, starting from the MinkUNet34C
until obtaining the MinkUNeXt architecture. The evolution
of the network and results is presented in Fig. 4. Table III
summarizes and describes the main design steps.

1) Global Design: As mentioned above, the starting point
is the MinkUnet34C [16] architecture and it is first modified by
adding a GeM pool layer. This step is marked as G1.1 in Fig.
4. The rest of the roadmap followed towards the final design is
described next. Each of the design steps is classified in one of
the following points: evaluating the cardinality, evaluating the
number of channels, changing the number of skip connections
and changing the stem to “Patchify”.

https://github.com/juanjo-cabrera/MinkUNeXt.git
https://github.com/juanjo-cabrera/MinkUNeXt.git

7

Average Recall at 1 (AR@1) in Oxford (Refined Protocol)

D
e
si

g
n

p
ro

g
re

ss

92.2 MinkUNet34C-GeM

92.4 MinkUNet18A-GeM

92.8 MinkUNet14A-GeM

93.0 MinkUNet14B-GeM

93.3MinkUNet14C-GeM

95.9 2 skip connections

96.3 3 skip connections

92.8Patchify

95.4Bottleneck

96.2Inv. Bottleneck

96.9ResNet Block + GeLUs

97.0Inv. Bottleneck + GeLUs

97.4LNs

97.21st conv (k=5)

97.31st conv (k=7)

97.71st conv (k=1)

MinkUNeXt

G1.1

G1.2

G1.3

G2.1

G2.2

G3.1

G3.2

G4

R1

R2

R3.1

R3.2

R4

R5.1

R5.2

R5.3

93 94 95 96 97 98

G
lo

b
a
l

D
e
si

g
n

R
e
si

d
u

a
l

B
lo

ck
D

e
si

g
n

Fig. 4. This diagram illustrates the design progress of the proposed architecture from MinkUNet up to MinkUNeXt. All the proposed modifications are
summarized in Table III.

G1. Evaluating the cardinality. The cardinality is defined as
the number of parallel blocks, that enables the network
to learn various input representations. In this sense,
different cardinality configurations per residual block are
assessed: (2, 3, 4, 6, 2, 2, 2, 2), (2, 2, 2, 2, 2, 2, 2, 2) and
(1, 1, 1, 1, 1, 1, 1, 1), corresponding to MinkUNet34,
MinkUNet18 and MinkUNet14, respectively. These car-
dinality values represent the number of instances of each
Residual Block that appear in blue colour in Fig. 2, but
at this point still with ResNet Blocks. In addition, these
cardinality configurations are summarized respectively
in steps G1.1, G1.2 and G1.3 in Fig. 4. As ilustrated in
the diagram, reducing the cardinality to the minimum,
with no parallel blocks, shows a better performance and
allows an improvement from 92.2% to 92.8% in terms
of average recall at 1 (AR@1). From now on, it will be
used 1 as cardinality of each residual block.

G2. Evaluating the number of channels. The number of
channels or filters correspond to the number of feature
maps that the convolutional layer can learn. The number
of filters corresponding to the convolutional layers of the
encoder are fixed to (32, 64, 128, 256), but the number of
channels of the decoder takes the following values (128,
128, 96, 96), (128, 128, 128, 128) and (192, 192, 128,
128) corresponding to MinkUNet14A, MinkUNet14B
and MinkUNet14C. This number of filters of the decoder
is summarized respectively in steps G1.3, G2.1 and G2.2
in Fig. 4. The best result is obtained with MinkUnet14C
(G2.2) with an AR@1 of 93.3%. Thus, the number of

filters of the transposed convolutions that will be adopted
in the subsequent architecture variations is (192, 192,
128, 128).

G3. Changing the number of skip connections. The origi-
nal U-Net is characterized by the presence of 4 skip con-
nections between the encoder and the decoder networks.
In this sense, in the present paper the performance of the
network is studied when reducing the number of skip
connections and removing the transpose convolutions af-
ter the last connection. Apart from the 4 skip connections
already implemented in the above configurations, we
have evaluated 2 and 3 skip connections corresponding
to G3.1 and G3.2 in Fig. 4. By reducing the number of
skip connections to 3 and removing the layers after the
last connection, the model shows, by far, the greatest
improvement on the AR@1, increasing the results from
93.3% to 96.3%. As a result, only 3 skip connections
will be included between the encoder and decoder.

G4. Changing the stem to “Patchify”. The stem refers to
the first layer in the network, which performs the initial
processing. In this case, the first processing is carried out
by a 3D Sparse Convolution with kernel size 5 and stride
1. The term “Patchify” refers to the act of splitting the in-
put data into a sequence of patches. Visual Transformers
[47] introduced this concept, originally inspired by NLP
Transformers [23]. The Swin Transformer [48] uses as
stem a non-overlapping convolution with kernel size 4
and stride 4. In this sense, these parameters are adopted

8

for the stem in G4, but the performance of the network
has decreased from 96.3% to 92.8% so “Patchify” is
discarded.

2) Residual Block Design: This section describes each
design step from ResNet Block to the proposed MinkNeXt
Block. The roadmap of the design of this residual block is
divided in the following points: creating a Bottleneck in the
residual block, creating an Inverted Bottleneck in the residual
block, replacing ReLUs with GeLUs, substituting BN with LN
and evaluating different kernel sizes.

R1. Creating a Bottleneck in the residual block. A Bot-
tleneck consists in reducing the dimensionality of the
hidden layer and then expanding it to its original size
using 1x1 convolutions. This modification led to worse
results in the performance of the proposed architecture.

R2. Creating an Inverted Bottleneck in the residual
block. Every Transformer block is characterized by an
inverted bottleneck, which consists in expanding the
dimensionality of the feature map of the hidden layer
and then reducing it to its original size by 1x1 convolu-
tions. In this case, 3D sparse convolutions with kernel
size 3 and stride 1 are employed to create the inverted
bottleneck with a hidden dimension four times wider
than the input dimension. Fig. 4 shows that this inverted
bottleneck block produces better results compared to the
previous ResNet block when analysed jointly with the
following modification (R3).

R3. Replacing ReLUs with GeLUs. The Rectified Linear
Unit (ReLU) [49] is the most employed activation func-
tion over time due to its simplicity and efficiency. How-
ever, recent advanced Transformers such as Google’s
BERT [50] or OpenAI’s GPT-4 [51] employ Gaussian
Error Linear Units (GeLUs) [44], which is a smoother
variant of ReLUs. Following the same philosophy, Re-
LUs are replaced with GeLUs in both the ResNet Block
and the inverted bottleneck block, steps R3.1 and R3.2
in Fig. 4, respectively. In both cases, the performance of
the architecture improves, but better results are obtained
with the proposed inverted bottleneck block, achieving
an AR@1 of 97.0%. In consequence, an inverted bottle-
neck with GeLUs will be used as residual block.

R4. Substituting BN with LN. Batch Normalization (BN)
[46] plays a critical role in convolutional networks
by enhancing convergence and mitigating overfitting.
However, BN may introduce complexities that may
negatively impact the model’s performance. Recently,
the simpler Layer Normalization [45] (LN) has been
successfully implemented in Transformers. Thus, BN
is replaced with LN in the proposed residual block,
obtaining an improvement of the model performance
up to 97.4%. As a result, Layer Normalization will be

employed instead of Batch Normalization in the residual
block.

R5. Evaluating different kernel sizes. Vision Transformers
are characterized by employing large kernel sizes with
a minimum dimension of 7. However, as shown in Fig.
4 (R5), the usage of smaller kernel sizes is beneficial
in the present place recognition task, both in the input,
hidden and last layers of the residual block. In this sense,
we find the best parameter configuration with a kernel
size of 1 in the first convolution and kernel sizes of 3 in
the hidden and last convolutions. This leads to the final
model and residual block architectures, which we have
named MinkUNeXt and MinkNeXt block, respectively.

TABLE III
THIS TABLE SUMMARIZES ALL MODIFICATIONS PROPOSED IN THE

ARCHITECTURE DESIGN PROGRESS FROM MINKUNET UP TO
MINKUNEXT.

ID Design modifications

G1.1 Cardinality: (2, 3, 4, 6, 2, 2, 2, 2) → (2, 2, 2, 2, 2, 2, 2, 2)
G1.2 Cardinality: (2, 2, 2, 2, 2, 2, 2, 2) → (1, 1, 1, 1, 1, 1, 1, 1)
G2.1 Decoder channels: (128, 128, 96, 96)→ (128, 128, 128, 128)
G2.2 Decoder channels: (128, 128, 96, 96)→ (192, 192, 128, 128)
G3.1 4 skip connections → 2 skip connections
G3.2 4 skip connections → 3 skip connections
G4 Stem (k=5, s=1 → k=4, s=4)
R1 ResNet Block → Bottleneck
R2 ResNet Block → Inv. Bottleneck
R3.1 ResNet Block with ReLUs → ResNet Block with GeLUs
R3.2 Inv. Bottleneck with ReLUs → Inv. Bottleneck with GeLUs
R4 Inv. Bottleneck with BNs → Inv. Bottleneck with LNs
R5.1 Inv. Bottleneck 1st convolution (k=3 → k=5)
R5.2 Inv. Bottleneck 1st convolution (k=3 → k=7)
R5.3 Inv. Bottleneck 1st convolution (k=3 → k=1)

F. Comparison with the state of the art

As defined in Subsection IV-C, the two training and evalua-
tion protocols established in [10] have been followed for place
recognition with the Oxford RobotCar and In-house datasets.
The baseline protocol consists in training the model only with
the Oxford training data and evaluating with the Oxford and
In-house (U.S., R.A. and B.D.) test data. In contrast, the
refined protocol consists in training with Oxford and In-house
(U.S., R.A.) training data and evaluating with the Oxford and
In-house (U.S., R.A. and B.D.) test data. These protocols
are widely used in the literature, so that the comparison is
performed on the same terms and conditions. Additionally,
the comparative results shown here have been obtained from
the same works that are referenced.

Tables IV and V present an overview of the results with
different techniques proposed in the state of the art compared
to the one proposed in this paper under the same training and
evaluation protocols (baseline and refined), in terms of average
recall at 1 (AR@1) and average recall at 1% (AR@1%). Each
column presents the results obtained with each of the datasets,
whereas the last two columns present the mean results.

9

1) Results with the Baseline Protocol: Table IV presents
the results of several methods in terms of average recall at
1 (AR@1) and average recall at 1% (AR@1%). It can be
observed that, PointNetVLAD established the starting point
for place-recognition from point clouds with the Oxford
Robotcar and the In-house dataset. PCAN slightly outperforms
PointNetVLAD on most datasets. BPT stands out with really
competitive results, especially in Oxford and U.S. RPR-Net
outperforms BPT in U.S, R.A and B.D., showing better
generalization capabilities. Some works, such as DAGC and
Retriever, do not provide AR@1 results for all datasets.
However, they presented AR@1% results which show a per-
formance better than PCAN, but worse than BPT. Futhermore,
LPD-Net, HiTPR, EPC-Net and E2PN-GeM show similar, but
good results across multiple scenarios. SOE-Net, only provides
AR@1% results which are really promising as they are close
to MinkLoc3D, the first architecture to exceed 90% in AR@1
with the Oxford dataset. Moreover, HiBi-Net, PPT-Net and
SVT-Net show slightly higher performance, specifically for
the In-house dataset. TransLoc3D takes a step forward with
the best result so far in Oxford and solid performance in
the other scenarios, and its improved version MinkLoc3Dv2
outperforms the rest of the architectures. In addition, KPPR
also shows a remarkable performance, but only presented
average recall at 1% results in the case of U.S., R.A., B.D.

Finally, the proposed architecture, MinkUNeXt, demon-
strates superior performance in terms of AR@1 and AR@1%
on Oxford. It outperforms all of the existing methods with
a 97.5% in AR@1 and 99.3% in AR@1%. However, the
performance slightly decreases when the model is tested
in U.S., R.A. and B.D. It should be highlighted that the
Oxford dataset and the three in-house datasets were obtained
using LiDARs that exhibit different characteristics, such as
number of channels or spatial resolution. The Oxford dataset
is captured with various SICK LMS-151 2D and the In-
house dataset with a 64 channel Velodyne. Moreover, the
submaps within the Oxford dataset contain scenes that are
entirely urban, characterized by densely built environments
with a more compact structure. In contrast, the scenarios
present in the in-house dataset are considerably more open,
with fewer obstructions and a more dispersed arrangement of
urban elements. This difference in the nature of the captured
scenes can significantly influence the results and performance
of the model on each dataset.

2) Results with the Refined Protocol: As for the perfor-
mances of the models when training with the refined protocol
(Table V), PointNetVLAD introduced the starting reference
point as well, surprisingly achieving a good performance in
U.S. R.A. and B.D. despite the simplicity of the network archi-
tecture. PCAN and DAGC presented similar results to Point-
NetVLAD for the In-house dataset, but especially better in
Oxford. In contrast, LPD-Net and SOE-Net show substantially
better performance in all metrics and datasets. MinkLoc3D
also manages to exceed 90% on average recall at 1 (AR@1)
in Oxford and generally performs well in all metrics and

sets. PPT-Net does not provide values for average recall at 1
(AR@1), but shows a promising performance on average recall
at 1% (AR@1%). Furthermore, SVT-Net stands out especially
in U.S., R.A. and B.D. In addition, TransLoc3D achieves good
results in all metrics, being one of the best methods overall.
MinkLoc3Dv2 boasted the best results in the state of the art
so far, showing improvements over MinkLoc3D.

Finally, the proposed MinkUNeXt model shows consid-
erable improvements in average recall at 1 (AR@1) and
average recall at 1% (AR@1%) for all the scenarios obtaining
the best results of the state of the art so far. The average
recall at 1 (AR@1) metric on Oxford dataset is 97.7% and
outperforms the runner-up MinkLoc3Dv2 by 0.8 p.p. On the
R.A., B.D. scenarios it surpasses MinkLoc3Dv2 by 0.1 to 1.1
p.p. Nevertheless, slightly worse results (0.3 p.p.) are obtained
with this metric in the U.S. dataset. Regarding the results in
terms of AR@1% for the refined protocol, there was little
room for improvement. However, the results on Oxford are
improved by 0.2 p.p. to reach 99.3%, on R.A. by 0.5 p.p.
to reach 99.9% and on B.D. by 0.1 p.p. to reach 97.7%. In
addition, although the model previously output slightly worse
results for U.S. in terms of AR@1, the performance of the
network in the AR@1% metric is equal to the best previous
result in the state-of-the-art with a value of 99.9%. The mean
AR@1 and AR@1% over all 4 datasets improves by 0.4% and
0.2%, respectively. To conclude, training the MinkUNeXt with
the refined protocol overcomes the generalization difficulties
presented when training with the baseline protocol, since the
model adapts to both LiDAR characteristics.

V. CONCLUSION

This paper presents MinkUNeXt, an architecture based
on MinkUNet [16] exhaustively modified and enhanced to
perform place-recognition based on point clouds. It is an
encoder-decoder architecture entirely based on the proposed
3D MinkNeXt Block: a residual block composed of 3D sparse
convolutions that follows the philosophy proposed by Con-
vNeXt [12]. The feature extraction step is performed by a U-
Net encoder-decoder. The feature aggregation of those features
into a single descriptor is carried out by a Generalized Mean
Pooling (GeM) [40]. The designed architecture demonstrates
that it is possible to surpass the current state of the art by only
relying on conventional 3D sparse convolutions without mak-
ing use of more complex and sophisticated proposals such as
Transformers, Attention-Layers or Deformable Convolutions.

The proposed network shows that the usage of a U-Net
architecture for point cloud-based place recognition is bene-
ficial, since it is able to capture both detailed and contextual
information of the three-dimensional environment. The fusion
of features from multiple spatial scales improves the robust-
ness of the place recognition model, allowing it to adapt to
variations in point cloud geometry and density, as well as to
different scenarios.

10

TABLE IV
EVALUATION RESULTS IN TERMS OF AVERAGE RECALL AT 1 (AR@1) AND AT 1% (AR@1%) OF PLACE RECOGNITION METHODS

TRAINED USING THE BASELINE PROTOCOL.

Oxford U.S. R.A. B.D. Mean

Method AR@1 AR@1% AR@1 AR@1% AR@1 AR@1% AR@1 AR@1% AR@1 AR@1%

PointNetVLAD [10] 62.8 80.3 63.2 72.6 56.1 60.3 57.2 65.3 59.8 69.6
PCAN [52] 69.1 83.8 62.4 79.1 56.9 71.2 58.1 66.8 61.6 75.2
DAGC [22] - 87.5 - 83.5 - 75.7 - 71.2 - 79.5
BPT [39] 85.7 93.3 80.5 89.3 77.4 86.6 74.1 78.5 79.4 86.9
Retriever [27] - 91.9 - 91.9 - 87.4 - 85.5 - 89.2
RPR-Net [37] 81.0 92.2 83.2 94.5 83.3 91.3 80.4 86.4 82.0 91.1
LPD-Net [14] 86.3 94.9 87.0 96.0 83.1 90.5 82.5 89.1 84.7 92.6
HiTPR [29] 87.8 94.6 86.0 94.0 81.3 89.1 81.8 88.3 84.2 91.5
EPC-Net [38] 86.2 94.7 - 96.5 - 88.6 - 84.9 - 91.2
E2PN-GeM [36] 84.8 93.2 88.1 95.3 83.7 90.5 83.3 87.7 85.0 91.7
SOE-Net [26] - 96.4 - 93.2 - 91.5 - 88.5 - 92.4
MinkLoc3D [15] 93.0 97.9 86.7 95.0 80.4 91.2 81.5 88.5 85.4 93.2
HiBi-Net [53] 87.5 95.1 87.8 - 85.8 - 83.0 - 86.0 -
NDT-Transformer [24] 93.8 97.7 - - - - - - - -
PPT-Net [25] 93.5 98.1 90.1 97.5 84.1 93.3 84.6 90.0 88.1 94.7
SVT-Net [28] 93.7 97.8 90.1 96.5 84.3 92.7 85.5 90.7 88.4 94.4
TransLoc3D [31] 95.0 98.5 - 94.9 - 91.5 - 88.4 - 93.3
MinkLoc3Dv2 [5] 96.3 98.9 90.9 96.7 86.5 93.8 86.3 91.2 90.0 95.1
KPPR [34] 91.5 97.1 - 98.0 - 95.1 - 92.1 - 95.6
MinkUNeXt (ours) 97.5 99.3 88.9 96.5 85.0 91.3 85.2 90.1 89.1 94.3

TABLE V
EVALUATION RESULTS IN TERMS OF AVERAGE RECALL AT 1 (AR@1) AND AT 1% (AR@1%) OF PLACE RECOGNITION METHODS

TRAINED USING THE REFINED PROTOCOL.

Oxford U.S. R.A. B.D. Mean

Method AR@1 AR@1% AR@1 AR@1% AR@1 AR@1% AR@1 AR@1% AR@1 AR@1%

PointNetVLAD [10] 63.3 80.1 86.1 94.5 82.7 93.1 80.1 86.5 78.0 88.6
PCAN [52] 70.7 86.4 83.7 94.1 82.5 92.5 80.3 87.0 79.3 90.0
DAGC [22] 71.5 87.8 86.3 94.3 82.8 93.4 81.3 88.5 80.5 91.0
LPD-Net [14] 86.6 94.9 94.4 98.9 90.8 96.4 90.8 94.4 90.7 96.2
SOE-Net [26] 89.3 96.4 91.8 97.7 90.2 95.9 89.0 92.6 90.1 95.7
MinkLoc3D [15] 94.8 98.5 97.2 99.7 96.7 99.3 94.0 96.7 95.7 98.6
PPT-Net [25] - 98.4 - 99.7 - 99.5 - 95.3 - 98.2
SVT-Net [28] 94.7 98.4 97.0 99.9 95.2 99.5 94.4 97.2 95.3 98.8
TransLoc3D [31] 95.0 98.5 97.5 99.8 97.3 99.7 94.8 97.4 96.2 98.9
MinkLoc3Dv2 [5] 96.9 99.1 99.0 99.7 98.3 99.4 97.6 99.1 97.9 99.3
MinkUNeXt (ours) 97.7 99.3 98.7 99.9 99.4 99.9 97.7 99.0 98.3 99.5

It should be also noted that the proposed method outputs
results outperforming an already saturated state-of-the-art. In
particular, the network achieved an AR@1 of 97.5% and an
AR@1% of 99.3% when trained with the refined protocol.
Thus, there is little room for improvement and larger and
more diverse scenarios are needed in order to stimulate further
progress.

Future work will consider the inclusion of visual infor-
mation into the place recognition system. In this sense, we
consider that it would result in a richer representation of the
environment compared to the use of LiDAR with pure distance
data. However, visual information is hindered by changing
lighting conditions, weather and seasonal changes, which pose
a great challenge.

ACKNOWLEDGMENTS

The Ministry of Science, Innovation and Universities
(Spain) has supported this work through “Ayudas para la

Formación de Profesorado Universitario” (FPU21/04969).
This work is also part of the project TED2021-130901B-
I00, funded by MCIN/AEI/10.13039501100011033 and the
European Union “NextGenerationEU”/PRTR, and of the
project PROMETEO/2021/075 funded by Generalitat Valen-
ciana (Spain). In addition, this research was sponsored by
national funds (Portugal) through FCT - Fundação para a
Ciência e a Tecnologia, under project LA/P/0079/2020, DOI:
10.54499/LA/P/0079/2020. This work was further funded
in the scope of the projects E-Forest—Multi-agent Au-
tonomous Electric Robotic Forest Management Framework,
ref. POCI-01-0247-FEDER-047104 and F4F—Forest for Fu-
ture, ref. CENTRO-08-5864-FSE-000031, co-financed by Eu-
ropean Funds through the programs Compete 2020 and Por-
tugal 2020.

11

REFERENCES

[1] H. Yin, L. Tang, X. Ding, Y. Wang, and R. Xiong, “LocNet: Global
localization in 3D point clouds for mobile vehicles,” in 2018 IEEE
Intelligent Vehicles Symposium (IV). IEEE, 2018, pp. 728–733.

[2] G. Kim and A. Kim, “Scan context: Egocentric spatial descriptor for
place recognition within 3D point cloud map,” in 2018 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2018, pp. 4802–4809.

[3] M. Leyva-Vallina, N. Strisciuglio, and N. Petkov, “Place recognition
in gardens by learning visual representations: data set and benchmark
analysis,” in International Conference on Computer Analysis of Images
and Patterns. Springer, 2019, pp. 324–335.

[4] M. Himstedt, J. Frost, S. Hellbach, H.-J. Böhme, and E. Maehle, “Large
scale place recognition in 2D LiDAR scans using geometrical landmark
relations,” in 2014 IEEE/RSJ International Conference on Intelligent
Robots and Systems. IEEE, 2014, pp. 5030–5035.

[5] J. Komorowski, “Improving point cloud based place recognition with
ranking-based loss and large batch training,” in 2022 26th International
Conference on Pattern Recognition (ICPR). IEEE, 2022, pp. 3699–
3705.

[6] J. Komorowski, M. Wysoczanska, and T. Trzcinski, “Large-scale topo-
logical radar localization using learned descriptors,” in Neural In-
formation Processing: 28th International Conference, ICONIP 2021,
Sanur, Bali, Indonesia, December 8–12, 2021, Proceedings, Part II 28.
Springer, 2021, pp. 451–462.

[7] X. Tang, W. Fu, M. Jiang, G. Peng, Z. Wu, Y. Yue, and D. Wang, “Place
recognition using line-junction-lines in urban environments,” in 2019
IEEE International Conference on Cybernetics and Intelligent Systems
(CIS) and IEEE Conference on Robotics, Automation and Mechatronics
(RAM), 2019, pp. 530–535.

[8] S. Arshad and G.-W. Kim, “A robust feature matching strategy for
fast and effective visual place recognition in challenging environmental
conditions,” International Journal of Control, Automation and Systems,
vol. 21, no. 3, pp. 948–962, 2023.

[9] Y. Wang, Z. Sun, C.-Z. Xu, S. E. Sarma, J. Yang, and H. Kong,
“LiDAR iris for loop-closure detection,” in 2020 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, 2020, pp.
5769–5775.

[10] M. A. Uy and G. H. Lee, “PointNetVLAD: Deep point cloud based
retrieval for large-scale place recognition,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2018, pp. 4470–
4479.

[11] X. Chen, T. Läbe, A. Milioto, T. Röhling, J. Behley, and C. Stachniss,
“Overlapnet: A siamese network for computing LiDAR scan similarity
with applications to loop closing and localization,” Autonomous Robots,
pp. 1–21, 2022.

[12] Z. Liu, H. Mao, C.-Y. Wu, C. Feichtenhofer, T. Darrell, and S. Xie, “A
convnet for the 2020s,” in Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, 2022, pp. 11 976–11 986.

[13] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “Pointnet: Deep learning on
point sets for 3D classification and segmentation,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2017, pp.
652–660.

[14] Z. Liu, S. Zhou, C. Suo, P. Yin, W. Chen, H. Wang, H. Li, and Y.-H. Liu,
“LPD-Net: 3D point cloud learning for large-scale place recognition and
environment analysis,” in Proceedings of the IEEE/CVF International
Conference on Computer Vision, 2019, pp. 2831–2840.

[15] J. Komorowski, “Minkloc3D: Point cloud based large-scale place recog-
nition,” in Proceedings of the IEEE/CVF Winter Conference on Appli-
cations of Computer Vision, 2021, pp. 1790–1799.

[16] C. Choy, J. Gwak, and S. Savarese, “4D spatio-temporal convnets:
Minkowski convolutional neural networks,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2019, pp.
3075–3084.

[17] F. Radenović, G. Tolias, and O. Chum, “Fine-tuning CNN image
retrieval with no human annotation,” IEEE transactions on pattern
analysis and machine intelligence, vol. 41, no. 7, pp. 1655–1668, 2018.

[18] J. Komorowski, M. Wysoczańska, and T. Trzcinski, “MinkLoc++:
LiDAR and monocular image fusion for place recognition,” in 2021
International Joint Conference on Neural Networks (IJCNN). IEEE,
2021, pp. 1–8.

[19] Y. Lu, F. Yang, F. Chen, and D. Xie, “Pic-net: Point cloud and image
collaboration network for large-scale place recognition,” arXiv preprint
arXiv:2008.00658, 2020.

[20] H. Song, W. Choi, and H. Kim, “Robust vision-based relative-
localization approach using an RGB-depth camera and LiDAR sensor
fusion,” IEEE Transactions on Industrial Electronics, vol. 63, no. 6, pp.
3725–3736, 2016.

[21] K. Żywanowski, A. Banaszczyk, M. R. Nowicki, and J. Komorowski,
“MinkLoc3D-SI: 3D LiDAR place recognition with sparse convolutions,
spherical coordinates, and intensity,” IEEE Robotics and Automation
Letters, vol. 7, no. 2, pp. 1079–1086, 2021.

[22] Q. Sun, H. Liu, J. He, Z. Fan, and X. Du, “Dagc: Employing dual
attention and graph convolution for point cloud based place recognition,”
in Proceedings of the 2020 International Conference on Multimedia
Retrieval, 2020, pp. 224–232.

[23] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in
neural information processing systems, vol. 30, 2017.

[24] Z. Zhou, C. Zhao, D. Adolfsson, S. Su, Y. Gao, T. Duckett, and
L. Sun, “NDT-transformer: Large-scale 3D point cloud localisation
using the normal distribution transform representation,” in 2021 IEEE
International Conference on Robotics and Automation (ICRA). IEEE,
2021, pp. 5654–5660.

[25] L. Hui, H. Yang, M. Cheng, J. Xie, and J. Yang, “Pyramid point cloud
transformer for large-scale place recognition,” in Proceedings of the
IEEE/CVF International Conference on Computer Vision, 2021, pp.
6098–6107.

[26] Y. Xia, Y. Xu, S. Li, R. Wang, J. Du, D. Cremers, and U. Stilla,
“SOE-Net: A self-attention and orientation encoding network for point
cloud based place recognition,” in Proceedings of the IEEE/CVF Con-
ference on computer vision and pattern recognition, 2021, pp. 11 348–
11 357.

[27] L. Wiesmann, R. Marcuzzi, C. Stachniss, and J. Behley, “Retriever:
Point cloud retrieval in compressed 3D maps,” in 2022 International
Conference on Robotics and Automation (ICRA). IEEE, 2022, pp.
10 925–10 932.

[28] Z. Fan, Z. Song, H. Liu, Z. Lu, J. He, and X. Du, “SVT-Net: Super
light-weight sparse voxel transformer for large scale place recognition,”
in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36,
no. 1, 2022, pp. 551–560.

[29] Z. Hou, Y. Yan, C. Xu, and H. Kong, in 2022 International Conference
on Robotics and Automation (ICRA). IEEE, 2022, pp. 2612–2618.

[30] C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “Pointnet++: Deep hierarchical
feature learning on point sets in a metric space,” Advances in neural
information processing systems, vol. 30, 2017.

[31] T.-X. Xu, Y.-C. Guo, Z. Li, G. Yu, Y.-K. Lai, and S.-H. Zhang,
“TransLoc3D: Point cloud based large-scale place recognition using
adaptive receptive fields,” arXiv preprint arXiv:2105.11605, 2021.

[32] Q. Wang, B. Wu, P. Zhu, P. Li, W. Zuo, and Q. Hu, “ECA-Net:
Efficient channel attention for deep convolutional neural networks,”
in Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, 2020, pp. 11 534–11 542.

[33] W. Maddern, G. Pascoe, C. Linegar, and P. Newman, “1 year, 1000 km:
The Oxford robotcar dataset,” The International Journal of Robotics
Research, vol. 36, no. 1, pp. 3–15, 2017.

[34] L. Wiesmann, L. Nunes, J. Behley, and C. Stachniss, “KPPR: Exploiting
momentum contrast for point cloud-based place recognition,” IEEE
Robotics and Automation Letters, vol. 8, no. 2, pp. 592–599, 2022.

[35] H. Thomas, C. R. Qi, J.-E. Deschaud, B. Marcotegui, F. Goulette, and
L. J. Guibas, “Kpconv: Flexible and deformable convolution for point
clouds,” in Proceedings of the IEEE/CVF international conference on
computer vision, 2019, pp. 6411–6420.

[36] C. E. Lin, J. Song, R. Zhang, M. Zhu, and M. Ghaffari, “Se (3)-
equivariant point cloud-based place recognition,” in Conference on Robot
Learning. PMLR, 2023, pp. 1520–1530.

[37] Z. Fan, Z. Song, W. Zhang, H. Liu, J. He, and X. Du, “RPR-Net: A
point cloud-based rotation-aware large scale place recognition network,”
in European Conference on Computer Vision. Springer, 2022, pp. 709–
725.

[38] L. Hui, M. Cheng, J. Xie, J. Yang, and M.-M. Cheng, “Efficient 3D
point cloud feature learning for large-scale place recognition,” IEEE
Transactions on Image Processing, vol. 31, pp. 1258–1270, 2022.

[39] Z. Hou, Y. Shang, T. Gao, and Y. Yan, “BPT: binary point cloud
transformer for place recognition,” arXiv preprint arXiv:2303.01166,
2023.

[40] F. Radenović, G. Tolias, and O. Chum, “Fine-tuning cnn image retrieval
with no human annotation,” IEEE transactions on pattern analysis and
machine intelligence, vol. 41, no. 7, pp. 1655–1668, 2018.

[41] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks
for biomedical image segmentation,” in Medical Image Computing

12

and Computer-Assisted Intervention–MICCAI 2015: 18th International
Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III
18. Springer, 2015, pp. 234–241.

[42] N. Sünderhauf, F. Dayoub, S. McMahon, B. Talbot, R. Schulz, P. Corke,
G. Wyeth, B. Upcroft, and M. Milford, “Place categorization and
semantic mapping on a mobile robot,” in 2016 IEEE international
conference on robotics and automation (ICRA). IEEE, 2016, pp. 5729–
5736.

[43] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
“Mobilenetv2: Inverted residuals and linear bottlenecks,” in Proceedings
of the IEEE conference on computer vision and pattern recognition,
2018, pp. 4510–4520.

[44] D. Hendrycks and K. Gimpel, “Gaussian error linear units (gelus),” arXiv
preprint arXiv:1606.08415, 2016.

[45] J. L. Ba, J. R. Kiros, and G. E. Hinton, “Layer normalization,” arXiv
preprint arXiv:1607.06450, 2016.

[46] S. Ioffe, “Batch renormalization: Towards reducing minibatch depen-
dence in batch-normalized models,” Advances in neural information
processing systems, vol. 30, 2017.

[47] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly et al.,
“An image is worth 16x16 words: Transformers for image recognition
at scale,” arXiv preprint arXiv:2010.11929, 2020.

[48] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and
B. Guo, “Swin transformer: Hierarchical vision transformer using shifted
windows,” in Proceedings of the IEEE/CVF international conference on
computer vision, 2021, pp. 10 012–10 022.

[49] V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltz-
mann machines,” in Proceedings of the 27th international conference on
machine learning (ICML-10), 2010, pp. 807–814.

[50] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

[51] J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L. Aleman,
D. Almeida, J. Altenschmidt, S. Altman, S. Anadkat et al., “Gpt-4
technical report,” arXiv preprint arXiv:2303.08774, 2023.

[52] W. Zhang and C. Xiao, “Pcan: 3D attention map learning using con-
textual information for point cloud based retrieval,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2019, pp. 12 436–12 445.

[53] D. W. Shu and J. Kwon, “Hierarchical bidirected graph convolutions
for large-scale 3D point cloud place recognition,” IEEE Transactions on
Neural Networks and Learning Systems, 2023.

	Introduction
	State of the art
	MinkUNeXt: global point cloud descriptor for place recognition
	Global Architecture
	Residual Block Architecture

	Experiments
	Datasets
	Labelling and similarity
	Training and evaluation
	Implementation details
	Ablation study: From MinkUNet to MinkUNeXt
	Global Design
	Residual Block Design

	Comparison with the state of the art
	Results with the Baseline Protocol
	Results with the Refined Protocol

	Conclusion
	References

