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Abstract. In this work we present a comparison of different methods
for topological height estimation applicable in UAVs navigation tasks
using omnidirectional images. We take profit of the camera calibration
information in oder to obtain different projections of the visual informa-
tion from the omnidirectional images. The descriptors used to collect the
visual information are based on the global appearance of the scenes. We
test the algorithms using a real and dealing database.

Keywords: UAV, global appearance descriptors, zooming, omnidirec-
tional image, topological navigation.

1 Introduction

Visual systems are commonly used in robotics navigation tasks. The richness of
the information that a camera provides and the multiple possibilities of config-
urations and applications make them a popular sensing mechanism. We focus
our work in omnidirectional vision and global appearance descriptors. In the
literature, we can find numerous examples where omnidirectional visual systems
are employed in navigation tasks, such as [19] and [9].

Classical research into mobile robots provided with vision systems has focused
on local features descriptors, extracting natural or artificial landmarks from the
image. Recent approaches propose processing the image as a whole, without
local feature extraction. These global appearance techniques have demonstrate
a good accuracy on the floor plane navigation in both location and orientation
estimation [5], [3].

Nowadays, Unmanned Aerial Vehicles (UAVs) are becoming very popular as
a platform in the field of robotic navigation research. In this sense, we can find in
[12], [6], [18] different works that study the motion and attitude of UAVs using
visual systems. Specifically, they are based on image feature extraction or image
segmentation in order to extract valuable information of the scenes.

The aim of this paper is to extend the use of the global appearance descriptors
to experiments where the height of the mobile robot changes. For that purpose,

M.A. Armada et al. (eds.), ROBOT2013: First Iberian Robotics Conference, 77
Advances in Intelligent Systems and Computing 253,
DOI: 10.1007/978-3-319-03653-3_7, c© Springer International Publishing Switzerland 2014
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we suppose that the UAV is stabilized and the visual sensor has the same at-
titude, which corresponds with the perpendicular regarding the floor plane. In
particular, we study the ability of height estimation using global appearance
descriptors.

The experimental database is composed of omnidirectional images acquired
using a catadioptric system composed of an hyperbolic mirror and a camera.

The remainder of the paper is structured as follows: Section 2 includes the
global appearance descriptors we use in order to compress the visual information.
Section 3 discusses the different methods used with the purpose of finding the
relative height between images acquired in a same point in the floor plane. In
the next section, the database used in the experiments is presented. Section 5
gathers the experimental results, and finally, the main conclusions are included
in section 6.

2 Global Appearance Descriptors

In this section we summarize some techniques to extract the most relevant infor-
mation from images. In particular, we describe descriptors based on the global
appearance of scenes. These descriptors are computed working with the image
as a whole, avoiding segmentation or landmarks extraction, trying to keep the
amount of memory to a minimum.

2.1 Fourier Signature

In [11] the Fourier Signature is defined. It is possible to represent an image using
the Discrete Fourier Transform of each row. So, we can expand each row of an
image image {an} = {a0, a1, . . . , aN−1} into the sequence of complex numbers
{An} = {A0, A1, . . . , AN−1}:

{An} = F [{an}] =
N−1∑

n=0

ane
−j 2π

N kn, k = 0, . . . , N − 1. (1)

Taking profit of the Fourier Transform properties, we just keep the first coef-
ficients to represent each row since the most relevant information concentrates
in the low frequency components of the sequence. Moreover, when working with
omnidirectional images, the modulus of the Fourier Transform of the image’s
rows is invariant against rotations in the perpendicular plane of the image. Rep-
resenting each row of the original image as F [{an}] and F [{an−q}] the same row
shifted q pixels, being q proportional to the relative rotation between images,
the rotational invariance can be expressed with the shift theorem as:

F [{an−q}] = Ake
−j 2πqk

N , k = 0, . . .N − 1, (2)

where F [{an−q}] is the Fourier Transform of the shifted sequence, and Ak are
the components of the Fourier Transform of the non-shifted sequence.
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2.2 2D Fourier Transform

When we have an image f(x,y) with Ny rows and Nx columns, the 2D discrete
Fourier Transform is defined through:

F [f(x, y)] = F (u, v) =
1

Ny

Nx−1∑

x=0

Ny−1∑

y=0

f(x, y)e
−2πj

(
ux
Nx

+ vy
Ny

)
,

u = 0, . . . , Nx − 1, v = 0, . . . , Ny − 1.

(3)

The components of the transformed image are complex numbers so it can be
split in two matrices, one with the modules (power spectrum) and other with the
angles. The most relevant information in the Fourier domain concentrates in the
low frequency components. Furthermore, removing high frequency information
can lead to an improvement in localization because these components are more
affected by noise. Another interesting property when we work with panoramic
images is the rotational invariance, which is reflected in the shift theorem:

F [f(x− x0, y − y0)] = F (u, v) · e−2πj
(

ux0
Nx

+
vy0
Ny

)
,

u = 0, . . . , Nx − 1, v = 0, . . . , Ny − 1.
(4)

According to this property, the power spectrum of the rotated image remains
the same of the original image and only a change in the phase of the components
of the transformed image is produced, whose value depends on the shift on the
x-axis (x0) and the y-axis (y0). Taking into account Eq. (4), the first row of
the bidimiensional Fourier Transform, which corresponds with v = 0, is only
affected by shifts on the x-axis, whereas the first column of the transform, which
corresponds with u = 0, is only affected by shifts on the y-axis.

2.3 Spherical Fourier Transform

Omnidirectional images can be projected onto the unit sphere when the intrin-
sic parameters of the vision system are known. Being θ ∈ [0, π] the colatitude
angle, and φ ∈ [0, 2π) the azimuth angle, the projection of the omnidirectional
image in the 2D sphere can be expressed as f(θ, φ). In [4], it is shown that the
spherical harmonic functions Ylm form a complete orthonormal basis over the
unit sphere. Any square integrable function defined on the sphere f ∈ L2(s2)
can be represented by its spherical harmonic expansion as:

f(θ, φ) =

∞∑

l=0

l∑

m=−l

f̂lmYlm(θ, φ), (5)

with l ∈ N and m ∈ Z, |m| ≤ l. f̂lm ∈ C denotes the spherical harmonic
coefficients, and Ylm the spherical harmonic function of degree l and order m
defined in Eq. 6.

Ylm(θ, φ) =

√
2l + 1

4π

(l −m)!

(l +m)!
Pm
l (cos θ)eimθ, (6)

where Pm
l (x) are the associated Legendre functions.
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It is possible to obtain a rotationally invariant representation from the Spher-
ical Fourier Transform. Considering B the band limit of f , the coefficients of
e = (e1, ..., eB) are not affected by 3D rotations of the signal, where

el =

√ ∑

|m|≤l

|f̂lm|2. (7)

We can find more information and examples of applications of the Spherical
Fourier Transform in navigation tasks in other works such as [8], [10], [15], [7]
and [16]

3 Height Estimation Methods

In this section we explain the different techniques used to obtain a measurement
of the relative height of images captured in a same point. We make use of func-
tions included in the Matlab Toolbox OCamCalib [14] to calibrate the camera
and obtain different views of the visual information from the omnidirectional
image.

3.1 Zooming of the Orthographic View

In [1], a method to obtain relative distance between images using zooming is
presented. We propose to make use of the zooming concept with the purpose of
measuring the vertical shift of a UAV.

However, we can not extract valuable information zooming the omnidirec-
tional image directly. We need a representation of the image perpendicular to
the robot movement. For that reason, we use the orthographic view [13] of the
scene. In [9], [2], we find examples where orthographic view is used in robot
navigation tasks.

We vary the distance of the plane where the omnidirectional image is projected
to obtain different zooms of the bird-eye view by changing the focal distance.

The indicator of the vertical distance between two images using this method
is the focal difference between both images.

After obtaining the orthographic view, we need to describe the scene. The
descriptors we use are the Fourier Signature and the 2D Fourier Transform.

3.2 Camera Coordinate Reference System Movement

As shown in [17], given an image, it is possible to simulate the movement of the
coordinate reference system (CRS) of the camera using the epipolar geometry,
modifying the projection of the original image. The reprojected image, that uses
the new CRS, reflects the movement of the camera.

Fist of all, we estimate the coordinates of the image in the real world in pixels.
m = [mxpix ,mypix ] are the pixel coordinates regarding the omnidirectional image
center. The camera calibration allows us to obtain the coordinates in the real
world of the image. The image will be represented in the unit sphere M ∈ R

3.
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Then, we apply a change in the camera reference system:

M ′ = M + ρ · T, (8)

being T the unitary displacement vector in the z-axis, (T = [0, 0, 1]T ), and ρ
a scale factor proportional to the displacement of the CRS.

Once we have the new coordinates of the image M ′, we can obtain the new
pixel coordinates m′. Doing the association of the pixels of m with the new co-
ordinates m′, we obtain the new omnidirectional image that includes the camera
CRS movement.

We have to take into account that, when we match the correspondences be-
tween m and m′, some pixel coordinates of the new image might lay outside the
image frame, and some other pixels might not have associated any value. We
interpolate the values of the pixels that have not any association.

After obtaining the new coordinates of the image, we need to gather the vi-
sual information using a descriptor. Note that from M ′, we can obtain different
representations of the visual information. Specifically, we use three different rep-
resentations of the scene: the orthographic view of the omnidirectional image, the
panoramic image, and the unit sphere. In Fig. 3, an example of each projection
is shown.

We use the Fourier Signature and the 2D Fourier Transform to describe the
orthographic and the panoramic views, whereas the Spherical Fourier Transform
describes the unit sphere projection.

To obtain the height difference of two scenes captured in the same (x,y) posi-
tion, we simulate different vertical CRS movements of the reference image, and
compare them with the test image. Then, we look for the best image association,
using the minimum Euclidean Distance of the image’s descriptors.

The height difference using this technique is represented by the displacement
scale factor ρ of the reference image.

4 Experimental Database

In order to carry out the experiments, we have acquired our own database of
omnidirectional images in outdoor locations. We use a catadioptric system com-
posed of a hyperbolic mirror and a camera with a resolution of 1280x960 pixels.
The camera has been coupled to a tripod that allow us to have a range of 165cm
in height.

The image acquisition has been done in 10 different locations. From every po-
sition, we capture 12 images in different heights. The minimum height is 125cm
(h=1), and the maximum is 290cm (h=12), with a step of 15cm between con-
secutive images. Therefore, the database is composed of 120 images captured
in real conditions. We do not vary the orientation of the images captured in
a same location, although small rotations and short displacements have been
unavoidable.

In the database, we include images near and far from buildings, garden areas
and a parking. We also vary the time when the images are captured to change
the illumination conditions and to have a more dealing database.



82 F. Amorós et al.

Fig. 1 and Fig. 2 include some examples of database images.

(a) (b) (c)

Fig. 1. Example of images captured in three different locations varying the relative
position with the nearest building and the illumination conditions

(a) (b) (c)

Fig. 2. Example of images captured at three different heights in the same location. (a)
is at a height of 125 cm, (b) is at a height of 200 cm and (c) is at a height of 290 cm.

In the experiments, we use different representations of the original visual
information. Specifically, we compute the panoramic image, the orthographic
view (or bird-eye view) and the projection onto the unit sphere. Fig. 3 includes
an example of each representation.

5 Experiments and Results

Our goal is to check whether the different techniques provide a topological mea-
surement in the image space proportional to the real change in height of the
scenes. The topological indicator will depend on the height estimation method.
For that purpose, we test all the methods included in Section 3 using three
different experiments.
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(a) (b) (c)

(d)

Fig. 3. Different projections of the same image. (a) Omnidirectional image, (b) Ortho-
graphic view, (c) Unit Sphere projection and (d) Panoramic view.

In the first experiment, we estimate the height of the images regarding lowest
image in height (h = 1) for each location. We simulate several vertical shifts
(with focal distance change or else the constant ρ variation depending on the
technique). We compute the descriptor of the resulting images and create a
comparison base with them. After that, we compare the other images captured
in each localization, which are in different heights, with the base.

The match criteria is the minimum Euclidean Distance of the descriptors. In
Fig. 4 we include the mean value and standard deviation of the height estimation
the 10 different locations.

The second experiment is analogous to the first one, but we vary the reference
image that forms the base. In this case, we choose the image corresponding to
h = 5 (185 cm) as reference, having test images both below and above the
comparison image. Fig. 5 includes the mean value and standard deviation of the
results for the 10 different locations.

In the third experiment, we focus the analysis in the gradient of heights. For
each location, we carry out as many comparisons as possible given a difference of
heights, taking the reference images at different heights. Specifically, for Δh = 2
(i.e., 30 cm), we have 100 experiments; for Δh = 4, 80 experiments; for Δh = 6,
60; and for Δh = 8, 40 different comparisons. The results are included in Fig. 6.

Taking into account all the experimental results, we can confirm that all the
methods present a monotonically increasing tendency as we increment the height
lag between the compared images. Moreover, considering the results of the second
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Fig. 4. Experimental results estimating the height regarding the image with h=0. Mean
and standard deviation of all the different locations using the different methods: (a)
Zooming over the the Orthographic view using the Fourier Signature descriptor, (b)
Zooming over the the Orthographic view using the 2D Fourier Transform descriptor, (c)
Camera CRSMovement with Orthographic view using the Fourier Signature descriptor,
(d) Camera CRS Movement with Orthographic view using the 2D Fourier Transform
descriptor, (e) Camera CRS Movement with Panoramic view using the Fourier Signa-
ture descriptor, (f) Camera CRS Movement with Panoramic view using the 2D Fourier
Transform descriptor, and (g) Camera CRS Movement with Unit Sphere projection
using Spherical Fourier Transform descriptor.
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Fig. 5. Experimental results estimating the height regarding the image with h=5. Mean
and standard deviation of all the different locations using the different methods: (a)
Zooming over the the Orthographic view using the Fourier Signature descriptor, (b)
Zooming over the the Orthographic view using the 2D Fourier Transform descriptor, (c)
Camera CRSMovement with Orthographic view using the Fourier Signature descriptor,
(d) Camera CRS Movement with Orthographic view using the 2D Fourier Transform
descriptor, (e) Camera CRS Movement with Panoramic view using the Fourier Signa-
ture descriptor, (f) Camera CRS Movement with Panoramic view using the 2D Fourier
Transform descriptor, and (g) Camera CRS Movement with Unit Sphere projection
using Spherical Fourier Transform descriptor.
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Fig. 6. Experimental results estimating four different gradients. Mean and standard
deviation of all the possible experiments using the different methods: (a) Zooming over
the the Orthographic view using the Fourier Signature descriptor, (b) Zooming over
the the Orthographic view using the 2D Fourier Transform descriptor, (c) Camera CRS
Movement with Orthographic view using the Fourier Signature descriptor, (d) Camera
CRS Movement with Orthographic view using the 2D Fourier Transform descriptor, (e)
Camera CRS Movement with Panoramic view using the Fourier Signature descriptor,
(f) Camera CRS Movement with Panoramic view using the 2D Fourier Transform
descriptor, and (g) Camera CRSMovement with Unit Sphere projection using Spherical
Fourier Transform descriptor
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experiment included in Fig. 5, when the test images are below the reference, the
height indicator has negative sign. This allow us to determine the direction of
the height difference.

The methods based on the orthographic view present better results than the
techniques based on other image projections. As a rule, when we increase the
height difference, the standard deviation increases. This is specially remarkable
in the method based on the camera CRS movement that uses the panoramic
view and the unit sphere projection.

When we simulate the CRS movement described in Eq.(8), we are applying the
same displacement in all the pixels of the image, independently of the distance
of the object depicted in the scene. However, when we change the height of the
camera in the real world, the objects vary their position in the image depending
on their relative position with the vision system. As an instance, the projection
of objects that are far away from the camera changes less than the projection of
closer objects when we vary the sensor location.

This is particularly notable when we work with the panoramic view or the
unit sphere projection, as we use almost the whole image, that usually includes
information of objects placed in different distances from the camera system. On
the contrary, the orthographic view usually include elements that are at a similar
distance (near the floor plane).

Despite this fact, the performance of all the algorithms are acceptable until a
height lag of 45cm (Δh = 3).

Regarding to the descriptor used to represent the image, the Fourier Signa-
ture presents better accuracy than Fourier 2D, although there is no important
difference in their performance.

In the experiments, we can also realize that the Spherical Fourier Transform
over the unit sphere outperforms the Fourier Signature and the FFT 2D over
the panoramic image. However, as stated above, the handicaps derived of the
camera CRS movement technique affect the results.

6 Conclusions and Future Work

In this work we have presented a comparison of different topological height es-
timation techniques applicable in UAVs navigation tasks using omnidirectional
images. The approaches we include in this work describe the visual informa-
tion using global appearance descriptors. The experiments have been carried
out using our own database captured in a real environment under challenging
conditions.

The experimental results demonstrate that all methods proposed are able to
estimate the relative height between two scenes captured in the same location for
small height lags. However, the techniques based on the orthographic view of the
scene present a better accuracy. Moreover, the Fourier Signature outperforms as
a descriptor of the scenes.

The algorithm can deal with small rotations and short displacements, although
it is not designed to work under bigger camera rotations or displacements. How-
ever, it would be to include the height estimation algorithm in a localization
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system in order to locate the mobile and estimate the phase lag between the
reference map and the current image. That way, we would be able to correct the
phase lag between scenes and to use the height estimation algorithms proposed
in this work.

The future work we should include the height estimation algorithm in a local-
ization system in order to locate the mobile and estimate the phase lag between
the map and the current image. It also should extend this research to include
topological distance estimation taking into account 6D movements and topolog-
ical mapping.
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