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Abstract: Lower-limb robotic exoskeletons are wearable devices that can be beneficial for people
with lower-extremity motor impairment because they can be valuable in rehabilitation or assistance.
These devices can be controlled mentally by means of brain–machine interfaces (BMI). The aim of
the present study was the design of a BMI based on motor imagery (MI) to control the gait of a
lower-limb exoskeleton. The evaluation is carried out with able-bodied subjects as a preliminary
study since potential users are people with motor limitations. The proposed control works as a
state machine, i.e., the decoding algorithm is different to start (standing still) and to stop (walking).
The BMI combines two different paradigms for reducing the false triggering rate (when the BMI
identifies irrelevant brain tasks as MI), one based on motor imagery and another one based on the
attention to the gait of the user. Research was divided into two parts. First, during the training phase,
results showed an average accuracy of 68.44 ± 8.46% for the MI paradigm and 65.45 ± 5.53% for the
attention paradigm. Then, during the test phase, the exoskeleton was controlled by the BMI and
the average performance was 64.50 ± 10.66%, with very few false positives. Participants completed
various sessions and there was a significant improvement over time. These results indicate that, after
several sessions, the developed system may be employed for controlling a lower-limb exoskeleton,
which could benefit people with motor impairment as an assistance device and/or as a therapeutic
approach with very limited false activations.

Keywords: brain–machine interfaces; EEG; exoskeleton; motor imagery

1. Introduction

Robotic exoskeletons are wearable devices that can enhance physical performance and
provide movement assistance. In the case of lower-limb robotic exoskeletons, they can be
beneficial for people with motor impairment in the lower extremities as they can assist the
gait and facilitate rehabilitation [1]. The combination of lower-limb robotic exoskeletons
with brain–machine interfaces (BMI), which are systems that decode neural activity to
drive output devices, offers a new method to provide motor support. Thus, patients could
walk while being assisted by an exoskeleton that is controlled by their brain activity.

In the literature, there are different BMI control paradigms for lower-limb exoskeletons
based on brain changes. The most common ones are steady-state visually evoked poten-
tials [2], which are based on visual stimuli; motion-related cortical potentials [3–6], which
are produced between 1500 and 500 ms before the execution of the movement, and and
event-related desynchronization/synchronization (ERD/ERS), which is considered to in-
dicate the activation and posterior recovery of the motor cortex during preparation and
completion of a movement [7–9]. BMI based on ERD/ERS are usually employed to detect
motion intention [3,6,10]. Similar ERD/ERS patterns are produced during motor imagery
(MI), which consists of the imagination of a movement [11–13]. When performing MI,
in contrast to external stimuli, brain changes are induced voluntarily and internally by the
subject. BMI based on MI have the objective of identifying different MI tasks or differentiat-
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ing between MI and an idle state [5,14–16]. The work of [16] combined MI with eye blinks
as a control criterion.

The main limitation of MI is that patients have to maintain it for long periods in order
to force the external device to perform any action. However, contrary to instantaneous
brain changes, such as MRCP or motion intention, continuous cognitive involvement of a
patient during the assisted motion can induce mechanisms of neuroplasticity. Neuroplas-
ticty is the ability of the brain to reorganize its structure and promote rehabilitation [17].
The performance of maintained brain tasks can be challenging as it requires high focus from
the user during the whole experiment and any external influence could easily disturb it.
Previous studies have tried to evaluate the level of attention of a subject during the control
of the external device [18] and some of them have considered it as a control paradigm for a
lower-limb BMI [15]. BMI systems need a training phase in which the model is calibrated
for each subject and then it is tested with with new data. In [5,14–16], during the training
phase, participants alternated periods of MI with idle state and the output device was only
moving during MI. Nevertheless, since BMI focus on sensorimotor rhythms, it is difficult
to ensure that it is not considering the actual motion instead of motor imagery.

In our previous work [19], we designed a lower-limb MI BMI to control a treadmill
and it was tested with able-bodied subjects. The BMI combined the paradigm of MI with
another one that measured the level of attention that users had during MI tasks. In the
test phase, i.e., when the output device was commanded by the BMI, the treadmill was
only activated when the attention measured was higher than a certain threshold, reducing
the number of false triggers. In order to ensure that motion artifacts did not affect the
BMI classifier model, the training phase consisted of two types of trials: full standing and
full motion trials. The mental tasks to perform were the same for both types, alternating
periods of MI with idle state. Both types of trials allowed the creation of two different
classifier models to be applied depending on the status of the subject: gait and stand.

In this study, the BMI designed in [19] was adapted for the control of the gait of a
lower-limb exoskeleton and it was evaluated with able-bodied subjects. The combination
of this BMI with a lower-limb exoskeleton is a promising and intuitive assistive approach
for people with motor impairment. In addition, it could potentially benefit people with
cortical damage (e.g., after a stroke) as a therapeutic approach for the recovery of lost
motor function. Participants were trained over 2–5 days to assess the effect of practice
on the performance. Each day’s session was divided into two parts: the training and test
phases. During training, subjects performed trials in which the exoskeleton was walking
the entire time and trials in which it was standing. In the test phase, the exoskeleton
provided real-time feedback in a closed-loop control scenario. This is a previous step in the
development of a BMI that will reinforce rehabilitation and/or assist the gait for patients
with neurological damage.

2. Materials and Methods
2.1. Participants

Two subjects participated in the study (mean age 23.5 ± 3.5). They did not report
any known disease and had no movement impairment. They did not have any previous
experience with BMI. They were informed about the experiments and signed an informed
consent form in accordance with the Declaration of Helsinki. All procedures were approved
by the Responsible Research Office of Miguel Hernández University of Elche.

2.2. Equipment

Brain activity was recorded with electroencephalography (EEG). A 32-electrode system
actiCap (Brain Products GmbH, Germany) was employed to record EEG signals. The
27 channels selected for acquisition were: F3, FZ, FC1, FCZ, C1, CZ, CP1, CPZ, FC5, FC3,
C5, C3, CP5, CP3, P3, PZ, F4, FC2, FC4, FC6, C2, C4, CP2, CP4, C6, CP6, P4. They were
placed following the 10-10 international system on an actiCAP (Brain Products GmbH,
Germany). Four electrodes were located next to the eyes to record electrooculography
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(EOG) and ground and reference electrodes were located on the right and left ear lobes,
respectively. Each channel signal was amplified with BrainVision BrainAmp amplifier
(Brain Products GmbH, Germany). Finally, signals were transmitted wirelessly to the
BrainVision recorder software (Brain Products GmbH, Germany).

H3 exoskeleton (Technaid, Madrid, Spain) was employed to assist the movement and
participants used crutches as support. Control start/stop gait commands were sent via
Bluetooth. The experimental setup can be seen in Figure 1.

Figure 1. Experimental setup.

2.3. Experimental Design

Each participant completed several sessions and each session was divided into two
parts. The first part consisted of the training phase, in which the exoskeleton was in opened-
loop control. Thus, it was remotely controlled by the laptop with predefined commands
based on the mental tasks to be registered and not by the output of the BMI classifier.
Afterwards, the second part of the session allowed assessment of the BMI performance
during closed-loop control of the exoskeleton. Commands issued by the BMI were sent to
the exoskeleton in real time based on the decoding of the brain activity obtained as output
of the BMI classifier, receiving the subjects’ real-time feedback on their performance.

2.3.1. Training Phase

In the first part of each session, subjects performed 20 trials. Each trial consisted of a
sequence of three mental tasks: MI of the gait, idle state and regressive count. For idle state,
participants were asked to be as relaxed as possible. The regressive count was randomly
changed every trial and consisted of a number between 300 and 1000 and a subtrahend
between 1 and 9. For example, if they were given the count 500-4, they had to compute
the series of subtractions of 496, 492, 488... until they had to perform the following task.
This task aims to focus the subject on a demanding mental task very different to MI in
order to assess a low level of attention to gait. The protocol can be seen in Figure 2a.
There was a voice message that indicated the beginning of each task: ‘Relax’, ‘Imagine’,
‘500-5’. The message for the regressive count indicated a different mathematical operation
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each time. In order to avoid evoked potentials, the 4 s period after auditory cues was not
considered for further analysis.

During the session, subjects used crutches to maintain stability. In addition, a member
of the research staff softly held the exoskeleton to prevent any possible loss of balance or
fall. Ten of the training trials were performed in a full no-motion status and the other ten
in a full motion status assisted by the exoskeleton. These trials were employed to train two
different BMI classifiers: StandClassifiers (with non-motion trials) and GaitClassifiers (with
full motion trials).

Figure 2. (a) The protocol of opened-loop trials and (b) the protocol of close-loop trials.

2.3.2. Test Phase

In the second part of each session, the BMI was tested in closed-loop control with the
two groups of classifiers obtained with the data of the training phase (StandClassifiers,
GaitClassifiers). Subjects performed five trials, whose protocol can be seen in Figure 2b.
The transition between tasks was indicated with voice messages for ‘Relax’ and ‘Imagine’
tasks. Notice that no ‘Regression count’ task was considered, as attention level to gait was
computed based on the information from training, but there was no need to implement a
low-level gait attention task in the testing trials.

2.4. Brain Machine Interface

The presented BMI had the following steps: data acquisition, pre-processing, feature
extraction, classification, exoskeleton control and evaluation.

As indicated before, this BMI was based on two paradigms: MI and attention. The first
one was based on the distinction between MI of the gait and an idle state, so only data
associated with these brain tasks were considered to train the classifiers (relax and motor
imagery). With regard to the attention paradigm, it measured the level of attention to
gait. Therefore, it had the objective of differentiating between the attention of the subject
during MI and the attention during irrelevant tasks. For this paradigm, all brain tasks from
training trials were contemplated (relax, motor imagery and regressive count). While the
attention to the gait was assumed to be high during MI tasks, it was assumed to be low
during regressive count and idle state. The schema of the BMI can be seen in Figure 3.
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Figure 3. Brain–machine interface (BMI) scheme. During training, the exoskeleton was in opened-
loop control, and for testing, it was in closed-loop control. The BMI used two different paradigms:
one based on motor imagery of gait and another one based on the user’s level of attention to gait.
Both paradigms shared some steps of pre-processing but there were additional different steps for
each one. Then, two different feature extraction methods were employed. Trials from the training
phase were used to train the BMI classifiers for testing.

2.4.1. Data Acquisition

EEG signals were recorded at a sampling frequency of 200 Hz. Then, epochs of 1 s
with 0.5 s of shifting were extracted and processed.

2.4.2. Pre-Processing

The pre-processing stage started with two frequency filters: a notch filter at 50 Hz
to remove the contribution of the power line and a high-pass filter at 0.1 Hz. In order
to reduce motion artifacts, electrode wires were fixed with clamps and a medical mesh.
The movement of jaw muscles can generate signal artifacts, so subjects were asked to not
swallow or chew while they were performing MI, regressive count or were in a idle state.

The H∞ denoising algorithm was applied to mitigate the presence of eye artifacts
and signal drifts [5]. This algorithm estimates the contribution of the EOG and a constant
parameter to the EEG signal and removes it. Afterwards, there were two different pre-
processing lines, one for each paradigm.

For the MI paradigm, a filter bank comprising multiple band-pass filters was applied
to the data after the H∞ denoising algorithm. Four band-pass filters were employed to
obtain data associated with alpha and beta rhythms.

Regarding the attention paradigm, EEG signals from each channel were first stan-
dardized following the process presented in [20]. For each channel, the maximum visual
threshold was computed as the mean of the 6 highest values of the signal. This value was
iteratively updated for each epoch and it was used to standardize the data as

SV(t)ch =
V(t)ch

1
Ch ∑Ch

j=1 MVThresholdj
. (1)

The signal of each chanel, V(t)ch, was normalized taking into consideration the maxi-
mum visual threshold (MVThreshold) of all the EEG channels. Subsequently, the surface
Laplacian filter was used to reduce spatial noise and enhance the local activity of each
electrode [21].
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2.4.3. Feature Extraction

The following step of the BMI has the objective of computing the characteristics of the
EEG during each brain task that could be discriminating.

For the MI paradigm, common spatial patterns (CSP) [22] are computed for each
frequency band. CSP estimate a spatial transformation that maximizes the discriminability
between two brain patterns. If X is the EEG that has N ∗ T dimensions, which are the
number of channels and number of samples, respectively, the CSP algorithm estimates a
matrix of spatial filters W that discriminates between two classes: (X1) and (X2). Firstly,
the normalized covariance matrices are computed for each class as in

C1 =
X1XT

1
trace(X1XT

1 )
, C2 =

X2XT
2

trace(X2XT
2 )

. (2)

These matrices are computed for each trial and C1 and C2 are calculated by averaging
over all trials of the same class. The averaged covariance matrices are combined to result
in the composite spatial covariance matrix that can be factorized as

C = C1 + C2 = U0ΣUT
0 . (3)

U0 is a matrix of eigenvectors and Σ is the diagonal matrix of eigenvalues. The aver-
aged covariance matrices are transformed as

P = Σ1/2UT
0 , (4)

S1 = PC1PT , S2 = PC2PT . (5)

S1 and S2 have common eigenvectors, and the sum of both matrices of eigenvalues is
the identity matrix.

S1 = UΣ1UT , S1 = UΣ2UTand Σ1 + Σ2 = I (6)

The projection matrix is obtained as

W = UT P. (7)

Z is the projection of the original EEG signal S into another space. Columns of W−1

are the spatial patterns.
Z = WX (8)

Although Z has N ∗ T dimensions, the first and last rows are the components that can
be better discriminated in terms of their variance. Therefore, for feature extraction, only the
m first and last components of Z are considered. Zp is the subset of Z and the variances of
each component are computed and normalized with the logarithm as

fp = log
var(Zp)

∑2m
i=1 Zp

. (9)

fp is the vector of features and has ( f bands ∗ 2 ∗ m) ∗ T dimension. m was set to 4, and
in the pre-processing phase, 4 band-pass filters were employed so the dimension is 32 ∗ T.

For the attention paradigm, power spectral estimation by Maximum Entropy Method
(MEM) was used to obtain features associated with each task. The signal of each electrode
was estimated as an autoregressive model in which the known autocorrelation coefficients
were calculated and the unknown coefficients were estimated by maximizing the spectral
entropy [23]. Afterwards, the autocorrelation cofficients were used to compute the power
spectrum that was compatible with the fragment of the signal analyzed, but it was also
evasive regarding unseen data. Afterwards, only the power of the frequencies in the
gamma band was considered [15].
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2.4.4. Classification

Training trials of each session were evaluated using leave-one-out cross-validation.
Each trial was once used as a test and the remaining trials conformed to the training group.
This process was performed independently for trials in which subjects were standing
(10 trials) and trials in which they were in motion (10 trials). Linear Discriminant Analysis
(LDA) [24] classifiers were created depending on the subject status—full standing trials
(StandClassifiers) and full motion trials(GaitClassifiers)—each one with two different
models based on the decoding paradigm: MI and attention paradigms. As stated above,
whereas LDA classifiers of the MI paradigm were only trained with data from MI and idle
state, LDA classifiers of the attention paradigm were trained with data from all brain tasks
(idle, regressive count, MI).

Concerning the test phase, the developed BMI was designed as a state machine system
in which a group of classifiers was chosen based on the status of the exoskeleton. This
way, if the subject is in a standing position, the MI and attention classifiers of the full
standing trials (StandClassifiers) are used to decide if the exoskeleton keeps standing or
starts moving, but if the subject is moving, the MI and attention classifiers obtained by the
full motion trials (GaitClassifiers) are used to continue walking or to stop. Predictions from
both paradigms were combined to decode control commands. Its design can be seen in
Figure 4. In summary, in each test trial, subjects started standing with the exoskeleton and
StandClassifiers were employed. The system could decode stop or walk commands based
on the prediction of their MI and attention classifiers. When a walk command was sent to
the exoskeleton, it started the gait and the system was changed to Gait state. Consequently,
GaitClassifiers were employed afterwards. Again, the system could decode stop or walk
commands, but when a stop command was issued, the exoskeleton stopped the gait and
the system changed to Stand state again.

Figure 4. State machine design of the brain–machine interface (BMI). There are two states, gait and
stand, that depend on the exoskeleton status. Each state is associated with two different classifiers,
one for each paradigm, that will be used to give decode control commands.

2.4.5. Exoskeleton Control

In the test phase, the exoskeleton was controlled by BMI decoded commands. MI
classifiers could predict two classes, 0 for idle state and 1 for MI, and attention classifiers
could predict a 0 for low attention to gait and a 1 for high attention. These predictions were
averaged every 10 s, which resulted in MI and attention indices that ranged from 0 to 1.
Control commands were selected based on the following rules:

• During 5 s, new commands cannot be issued.
• If subject was standing:
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– If the MI index was higher than or equal than 0.7 or the MI index was higher than
or equal than 0.6 and the attention index was higher than or equal to 0.4, a move
command was issued and the exoskeleton started the gait.

– Otherwise, the exoskeleton kept standing.

• If the subject was walking:

– If the MI index was lower than or equal to 0.4, a stop command was issued and
the exoskeleton stopped the gait.

– Otherwise, it kept walking.

2.5. Evaluation

The accuracy of training trials was defined as the percentage of correctly classified
epochs during each brain task. This metric was computed separately for trials in which par-
ticipants were moving and trials in which they were static. Furthermore, the performance
of closed-loop trials was assessed with the following indices:

• %MI and %Att: percentage of epochs of data correctly classified for each paradigm.
• %Commands: percentage of epochs of data with correct control commands.
• Accuracy commands: percentage of correct commands issued.
• True positive ratio (TPR): percentage of MI periods in which a walking event is

executed. There is only an event of MI per trial, so this value can only be 0 or 100%
per trial.

• False positives (FP) and false positives per minute (FP/min): moving commands
issued during rest periods.

Transition events were not considered for the computation of evaluation metrics.

3. Results

During training, participants wore the exoskeleton in an opened-loop control. Each
subject completed several sessions, and on each of them, they completed 20 trials: 10 tri-
als standing still and 10 trials walking. Results from subjects S1 and S2 are shown in
Tables 1 and 2, respectively. It must be noted that they did not have the same amount
of practice since they participated in a different number of sessions. Two different BMI
paradigms were carried out. For the MI paradigm, S1 reached an average accuracy of
72.77 ± 6.61% with a difference of around 6% between the two conditions, standing and
walking. In the last session, S2 achieved an average accuracy of 64.11 ± 9.98 with a differ-
ence of 20% between the two approaches. With respect to the attention paradigm, S1 ob-
tained an accuracy of 65.06 ± 6.44 with a difference of 8%, and S2 achieved 65.83 ± 4.43 and
a 10% difference. The average accuracy of the MI and attention paradigm was 68.44 ± 8.46%
and 65.45 ± 5.53%, respectively.

Figures 5 and 6 show the spatial patterns of S1 and S2 in their last session. Moreover,
in order to provide a comparison under the same conditions, Figure 7 shows the spatial
patterns of S3 in the second session. The spatial patterns estimated during trials without
movement show that for S1 and S2, electrode FCz seems to have a relevant role in the
discrimination of idle state. During MI events, the most significant electrodes for both
subjects are peripheral as FC5. However, results from S2 show that in the 5–10 Hz band,
C2 and CPz are relevant to the MI of gait. Regarding trials in which participants are walking,
the distribution of relevant areas seems scattered for idle state and for MI; peripheral
electrodes are also highlighted.

When comparing the spatial patterns of S2 in two different sessions, the main similar-
ities can be found in the stand trials. CPz and Cz are highlighted for the relax class and
electrode FC5 seems to be significant for the MI class.
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3.1. Training Phase

Table 1. Results from training, subject S1. Trials with opened-loop control of the exoskeleton.

Session 1 Session 2

Stand %MI 59.29 ± 10.51 69.64 ± 7.62
%Att 57.38 ± 9.27 60.83 ± 7.58

Gait %MI 58.93 ± 11.60 75.89 ± 5.41
%Att 65.83 ± 8.57 69.29 ± 5.04

Table 2. Results from training, subject S2. Trials with opened-loop control of the exoskeleton.

Session 1 Session 2 Session 3 Session 4 Session 5

Stand %MI 53.32 ± 8.59 69.64 ± 8.70 65.54 ± 5.12 64.2 ± 11.45 74.11 ± 6.14
%Att 63.95 ± 4.44 62.57 ± 8.77 58.21 ± 8.76 59.52 ± 8.44 60.83 ± 5.48

Gait %MI 50.26 ± 7.54 54.17 ± 8.75 62.50 ± 8.91 59.82 ± 10.11 54.11 ± 12.71
%Att 61.05 ± 5.13 63.36 ± 2.84 61.55 ± 7.21 65.71 ± 6.82 70.83 ± 3.04

Figure 5. Spatial patterns for the session of S1 that best discriminate between motor imagery (MI)
and idle state. (a) The spatial patterns from trials in which participant was standing still and (b) the
spatial patterns from trials in which they were walking with the exoskeleton.
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Figure 6. Spatial patterns for the session of S2 that best discriminate between motor imagery (MI)
and idle state. (a) The spatial patterns from trials in which participant was standing still and (b) the
spatial patterns from trials in which they were walking with the exoskeleton.

Figure 7. Spatial patterns for the fifth session of S2 that best discriminate between motor imagery
(MI) and idle state. (a) The spatial patterns from trials in which participant was standing still and (b)
the spatial patterns from trials in which they were walking with the exoskeleton.
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3.2. Test Phase

The exoskeleton was controlled by the BMI decoded commands and the BMI classifiers
were trained with training trials. Tables 3–5 summarize the results from closed-loop trials.
TPR is 100% in the majority of trials, which means that the exoskeleton was activated at
least once during the MI event. The number of false positive activations during idle state
ranged from 0 to 2. Regarding %Commands, it improved by 13% from the first to the
last session of S2, although their performance in each session was not always superior
to the previous one. In the last session, the average %Commands for both subjects was
64.50 ± 10.66%.

Table 3. Test results, subject S1. Trials in close-loop control.

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Avg.

Session 1

%MI 64.13 50.00 48.91 61.96 56.52 56.30
%Att 51.09 58.70 53.26 47.83 55.43 53.26
%Commands 63.00 78.00 62.00 60.00 83.00 69.20
Acc. commands 50.00 50.00 50.00 0.00 50.00 40.00
TPR 100.00 100.00 100.00 0.00 100.00 80.00
FP 1.00 0.00 1.00 0.00 0.00 0.40
FP/min 2.31 0.00 2.31 0.00 0.00 0.92

Session 2

%MI 61.96 52.17 50.00 60.87 57.61 56.52
%Att 64.13 46.74 61.96 60.87 57.61 58.26
%Commands 60.00 57.00 63.00 57.00 69.00 61.20
Acc. commands 75.00 75.00 75.00 50.00 66.67 68.33
TPR 100.00 100.00 100.00 100.00 100.00 100.00
FP 1.00 1.00 1.00 1.00 1.00 1.00
FP/min 2.31 2.31 2.31 2.31 2.31 2.31

Table 4. Test results, first two sessions of subject S2. Trials in close-loop control.

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Avg.

Session 1

%MI 50 44.57 43.48 42.39 43.48 44.78
%Att 47.83 56.52 53.26 53.26 50 52.17
%Commands 59.00 54.00 53.00 53.00 53.00 54.40
Acc. commands 0.00 0.00 0.00 0.00 0.00 0.00
TPR 100.00 100.00 100.00 100.00 100.00 100.00
FP 1.00 1.00 1.00 1.00 1.00 1.00
FP/min 2.31 2.31 2.31 2.31 2.31 2.31

Session 2

%MI 46.74 60.87 48.91 54.35 52.17 52.61
%Att 56.52 59.78 43.48 66.3 64.13 58.04
%Commands 59.00 53.00 37.00 76.00 68.00 58.60
Acc. commands 0.00 100.00 0.00 66.67 100 53.33
TPR 100.00 100.00 0.00 100.00 100.00 80.00
FP 1.00 0.00 1.00 1.00 0.00 0.60
FP/min 2.31 0.00 2.31 2.31 0.00 1.38
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Table 5. Test results, last three sessions of subject S2. Trials in close-loop control.

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Avg.

Session 3

%MI 63.04 46.74 52.17 48.91 46.74 51.52
%Att 45.65 44.57 55.43 52.17 50 49.56
%Commands 67.00 81.00 75.00 63.00 63.00 69.80
Acc. commands 60.00 60.00 75.00 40.00 50.00 57.00
TPR 100.00 100.00 100.00 100.00 100.00 100.00
FP 2.00 1.00 1.00 2.00 2.00 1.60
FP/min 4.62 2.31 2.31 4.62 4.62 3.69

Session 4

%MI 53.26 64.13 45.65 58.7 58.7 56.09
%Att 58.7 56.52 75 55.43 71.74 63.48
%Commands 57.00 64.00 57.00 78.00 65.00 64.20
Acc. commands 0.00 100.00 0.00 75.00 50.00 45.00
TPR 100.00 100.00 100.00 100.00 100.00 100.00
FP 1.00 0.00 1.00 1.00 1.00 0.80
FP/min 2.31 0.00 2.31 2.31 2.31 1.85

Session 5

%MI 59.78 56.52 59.78 59.78 61.96 59.56
%Att 70.65 70.65 59.78 67.39 56.52 65.00
%Commands 56.00 73.00 52.00 88.00 70.00 67.80
Acc. commands 40.00 66.67 100.00 100.00 33.33 68.00
TPR 100.00 100.00 100.00 100.00 100.00 100.00
FP 2.00 1.00 0.00 0.00 2.00 1.00
FP/min 4.62 2.31 0.00 0.00 4.62 2.31

4. Discussion

Contrary to the findings of our previous work on a BMI-controlled treadmill [19], we
found significant differences between opened-loop trials in which subjects were standing
and when they were walking. It is important to note that walking assisted by an exoskele-
ton is a more complex task than walking on a treadmill, so subjects must be concentrated.
Consequently, it is more difficult for them to perform other brain tasks such as MI or regres-
sive count. In addition, when comparing the results from closed-loop trials, the average
percentage of epochs with correct commands was 64.5% with the exoskeleton and 75.6%
with the treadmill. A possible explanation for this contrast could be also related to the
complexity of the movement with the exoskeleton.

On the other hand, the attention paradigm showed worse performance than the
MI paradigm in opened-loop trials, which is consistent with the findings of our previous
work [19]. However, in line with our previous work with an exoskeleton [15], this difference
is not as evident in closed-loop trials. Therefore, future BMI designs could rely more on the
attention paradigm for the activation of the exoskeleton.

While results from the MI paradigm showed an increasing trend throughout sessions,
this pattern is not as evident for the attention paradigm. Our results for the MI paradigm
are in consonance with the conclusions from [25]. Performing MI is not an intuitive activity
for novel participants and practice could promote the modulation and enhance brain
activity patterns. Nevertheless, with regard to the attention of the user, the performance
does not seem to improve with practice. The attention is something that people train on
daily basis, so this could explain why a few sessions cannot further improve it.

There are not many investigations in the literature that developed BMI based on
lower-limb MI without other external stimuli [2] and they are usually based on motion
intention [3,6,10]. In addition, the works of [4,26] employed upper-limb MI to control a
lower-limb exoskeleton. Reference [26] showed a percentage of correct commands issued
every 4.5 s of 66% and [4] of 80.16% but the BMI was only employed to start the gait
and not to stop it. These values can be compared with the %Commands of the present
paper. Although superior results are achieved with upper-limb MI, this paradigm cannot
be applied to promote neuroplasticity.
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In [16], a BMI was presented that employed a combination of MI with eye blinking as
a control paradigm, and an accuracy of 86.7% was reported. However, although control
mechanisms that employ eye movements have proven to be precise, they lack application
from the rehabilitation point of view. In addition, the work of [14] presented a BMI that
only controlled the start and maintenance of the gait of a lower-limb exoskeleton and they
obtained an average accuracy of 74.4%. In our previous research [15] that also combined
the MI and attention paradigms to control an exoskeleton, the percentage of epochs with
correct commands issued was 56.77%. Slightly superior results were achieved with the
current BMI algorithm.

5. Conclusions

The current research presents a BMI system based on MI and attention paradigms that
has been tested to control a lower-limb exoskeleton. Participants performed 2–5 sessions
to assess the effect of practice on the performance. Each session was divided into two
parts: the training and test phases. First, participants completed trials in which they had
to perform certain brain tasks and the exoskeleton was controlled remotely by the laptop
with predefined commands. During half of the trials, the exoskeleton was walking, and
during the other half, it was completely static. Therefore, contrary to previous works,
brain tasks to discriminate happened under the same conditions. Moreover, this setup can
reduce the effect of artifacts on the predictions. The average performance in the last session
was 68.44 ± 8.46% for the MI paradigm and 65.45 ± 5.53% for the attention paradigm.
The second part of the each session consisted of closed-loop controlled trials in which the
exoskeleton was commanded by the predictions of the BMI. The BMI worked as a state
machine that used different classifiers depending on whether the exoskeleton was static or
moving. Training trials were used to train the classifiers corresponding to each state of the
state machine. The BMI took a decision every 0.5 s and the average percentage of correct
commands chosen was 64.50 ± 10.66% for the last session of both subjects.

Participants did not have any motor impairment, but since the main of objective of
the system is to promote neurorehabilitation and neuroplasticity, future research will focus
on people with motor disabilities.
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