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Abstract: When having a multi-robot system in
which each robot contructs its own local map, it can
be necessary to perform the fusion of these local maps
into a global one. The Map Fusion problem involves
the consecution of two different tasks: Map Align-
ment and Map Merging. The Map Alignment consists
in computing the transformation, if existent, between
the local maps. In this way, all the observations will
be referenced to a common global frame. In the Map
Merging stage, a global map is constructed from the
local maps by integrating their information. This pa-
per is focussed on the first step: Map Alignment. Par-
ticularly, a collection of aligning algorithms is eval-
uated in order to select the method that obtains the
best results in terms of accuracy and stability. The
experiments are performed in a multi-robot system,
in which each robot constructs its own local map in-
dependently. These maps are visual landmark-based
and the mapping algorithm used is FastSLAM.

Key-Words: multi-robot system, map alignment, vi-
sual SLAM.

1 INTRODUCTION

A real autonomous robot must have the ability to explore
an environment and build a map of it. As a consequence
the problem ofSimultaneous Localization and Mapping
(SLAM) has received great attention. Regarding to the
sensors used, many approaches use range sensor such as
SONAR [1] or LASER [2]. However, there is an increas-
ing interest in using cameras as sensors in SLAM. This
is due to the fact that cameras obtain a higher amount of
information and are less expensive than lasers. Besides,
3D information can be provided when stereo cameras are
used.

Most visual SLAM approaches are landmark-based

and the maps represent the localization of a set of dis-
tinctive points from the environment with respect to a
global reference frame [3, 4]. These distinctive points are
landmarks accompanied generally by a visual descriptor,
which encodes the visual appearance of these landmarks.

The process of SLAM can be performed by a single
robot, but it will be more efficient if a team of robots
cooperate in the solution of this task. This approach
is denoted as multi-robot SLAM. In a multi-robot sys-
tem, the robots explore simultaneously the environment
and perform observations of it in such a way that a suit-
able map can be built collaboratively. Many solutions to
the multi-robot SLAM problem have emerged [5, 6] so
far. These solutions can be classified into two different
groups. On the one hand, there are solutions in which
the estimate of the trajectories and map building is per-
formed jointly [2, 7, 8] so that a unique map is built. In
this case, robots have a global notion of the environment
and thus the exploration can be performed efficiently.
However, the computational cost is higher and the ini-
tial pose of robots should be known, which is something
that may not be possible in practice. On the other hand,
there are solutions in which each robot builds its own
local map independently [9]. The robots maintain their
local maps until the fusion of the maps is required. Ac-
cording to [10], one of the main advantages of using inde-
pendent local maps is that the data association problem is
made easier. In this case, new observations should only
be matched with a limited number of landmarks in the
local maps. Moreover, the fusion of the local maps into
a global one increases the robustness of the association
process. Besides, it can be considered the case in which
the initial poses of the robots are unknown.

Map fusion has received attention since the last few
years. This is a challenging approach since many impor-
tant issues must be faced. For instance, the moment in
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which the map fusion should be performed. Some au-
thors propose arendezvousstrategy [6, 9, 11], in which
the robots try to meet each other in a location and then
merge their maps by means of the shared data. In [11],
the meeting point is estimated with a particle filter ap-
proach and afterwards the robots arrange to meet in that
location.

The fusion of local maps is performed in two main
steps. The first one consists in computing the transfor-
mation, if existent, between the local maps. This is de-
noted as Map Alignment. Then, once the transforma-
tion between maps is known, the second step is to merge
the maps (Map Merging). The problem is to decide how
to integrate the information from each local map into a
unique global map.

This paper is focussed on the first step, i.e., Map
Alignment. In order to solve the transformation between
local maps, some approaches try to compute the relative
poses of the robots. As soon as the relative poses are
known, the alignment of the maps is immediate. In that
sense, the easiest case can be seen in [2], where the rela-
tive pose of the robots is considered known. A more chal-
lenging approach is presented in [6, 9]. As mentioned
above, in these strategies a meeting point is arranged by
the robots in order to share information of their maps and
compute their relative poses. More difficult would be
the approaches in which the robots determinate whether
any alignment exists or not without the need of meeting,
just by sharing the information of their maps. Some au-
thors present feature-based techniques in order to align
maps [12, 13, 14]. The basis of these techniques is to find
matches between the landmarks of the local maps and
then to obtain the transformation between them. Our pa-
per focusses on the latter approach. Particularly, our aim
is to analyze the performance of some methods that com-
pute the transformation between a pair of3D landmark-
based maps. The experiments are performed with real
data using the FastSLAM algorithm.

2 MAP BUILDING

The mobile robots used in these experiments are Pio-
neer P3-AT, provided with a LASER and a STH-MDCS2
stereo head from Videre Design. The mapping and nav-
igation algorithm used is the FastSlam algorithm intro-
duced in [15]. The robots construct progressively visual
landmark-based maps of the environment by using exclu-
sively the stereo camera and the odometry information.
The visual landmarks, extracted from images of the en-
vironment, consist of Harris points detected by the Har-

ris Corner detector [16] and described by U-SURF [17].
The combination of this detector and descriptor was se-
lected as the most suitable feature extractor under our re-
quirements in a previous work [18, 19]. In this case, two
robots explore an indoor environment in the first floor
of our building. The appearance of this environment is
that of a typical office building in which the most com-
mon elements are doors, posters in the walls, windows,
etc. The robots initially start from different positions and
then continue navigating and building their maps inde-
pendently, i.e., each robot has no knowledge about the
position of the other robot and its observations. The lo-
cal maps built by the robots consist of the3D coordinates
of the Harris points detected and their correspondent de-
scriptor U-SURF. Each map is referred to the local ref-
erence frame of each robot, which is located in its initial
starting position.

3 ALIGNING METHODS

In this section, several methods for map alignment are
presented. These methods are suitable for aligning maps
which are landmark-based. Particularly, in this case these
maps consist of the3D coordinates of significant points
extracted from the environment (Harris points) and their
correspondent descriptor (U-SURF). All these methods
try to establish correspondences between the detected
points in both maps by means of their descriptor sim-
ilarity. Then, different techniques are used in order to
compute the alignment of these maps from these corre-
spondences.

3.1 RANSAC

This technique has been already applied to map align-
ment in [12]. The steps of this algorithm are described
below.

1. First, a list of possible correspondences is obtained.
Two points are considered as correspondences if the
Euclidean distance between them is the minimum
and it is below the thresholdth0. The coordinates
m = (xi, yi, zi) are the landmarks of one of the
maps, andm′ = (x′i, y

′
i, z

′
i) their correspondences

in the other map.

2. In a second step, two pairs of correspondences are
selected at random from the previous list. These
pairs should satisfy the following geometric con-
straint:

A2 + C2 ≈ B2 + D2 (3.1)
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whereA = (x′i−x′j), B = (y′i−y′j), C = (xi−xj)
and D = (yi − yj). The geometric constraint is
satisfied if|(A2+C2)−(B2+D2)| < th1. The two
pairs of correspondences are used to compute the
alignment parameters (tx,ty, θ) with the following
equations:

tx = xi − x′i cos θ − y′i sin θ (3.2)

ty = yi − y′i cos θ + x′i sin θ (3.3)

θ = arctan
BC −AD

AC + BD
(3.4)

3. The third step consists in looking for possible corre-
spondences that support the computed transforma-
tion (tx,ty, θ), setting the thresholdth2. Finally, the
second and third step are repeatedM times. The fi-
nal solution will be the one with the highest number
of supports.

In our experiments, we have selected these values for the
thresholds mentioned above:th0 = 2m, th1 = 2m and
th2 = 2m. Furthermore, a parametermin = 20 estab-
lishes the minimum number of supports in order to vali-
date a solution andM = 70 is the number of times that
steps2 and3 are repeated. These are considered as in-
ternal parameters of the algorithm and their values have
been experimentally selected .

3.2 SVD

One of the applications of the Singular Value Decompo-
sition (SVD) is the registration of3D point sets [20, 21].
This concept means obtaining a common reference frame
by estimating the transformations between the data sets.
In this paper the SVD has been applied for the computa-
tion of the alignment between two maps.

Given a list of possible correspondences, our aim is to
minimize the following expression:

‖m′B −m‖ (3.5)

wherem′ and m are sets of correspondences between
both maps. Next,B is the transformation matrix between
both coordinate systems:

B =




cos θ − sin θ 0 0
sin θ cos θ 0 0

0 0 1 0
tx ty 0 1


 (3.6)

B is computed as shown in Algorithm 1 of this sec-
tion. In order to construct this list of correspon-
dences (m and m′), the first step of the RANSAC al-
gorithm (3.1) is performed. Then, the geometric con-
straint of Equation 3.1 is also evaluated. The internal
parameters are equal to those specified in Section 3.1.

Data: m andm′

Result: Computation of matrixB
[u, d, v] = svd(m′);
z = u′ ·m;
sv = diag(d);
z1 = z(1 : n); // n is the number of eigenvalues (not
equal to0) in sv.
w = z1./sv;
B = v ∗ w;

Algorithm 1 : Computation of the transformation ma-
trix with SVD.

3.3 ICP

The Iterated Closed Point (ICP) technique was intro-
duced in [22, 23] and applied to the task of point reg-
istration. The ICP algorithm iterates two steps:

1. Compute correspondences(m,m′). Given an ini-
tial estimateB0, a set of correspondences(m,m′)
is computed so that it supports the initial parame-
ters ofB0. B0 is the transformation matrix between
both maps indicated in expression 3.6.

2. Update transformationB. The previous set of cor-
respondences is used to update the transformation
B. The newBx+1 will minimize the expression:
‖m − m′ · Bx+1‖, which is analogous to the ex-
pression 3.5. For this reason, we have solved this
step with the SVD algorithm (Algorithm1 in Sec-
tion 3.2).

The algorithm stops when the set of correspondences
does not change in the first step, and thereforeBx+1 is
equal toB in the second step.

This technique needs a quite good initial estimation of
the transformation parameters so that it converges prop-
erly. For that reason, in order to obtain an appropriate ini-
tial estimate we perform the two first steps in RANSAC
algorithm (3.1).

3.4 ImpICP

The improved ICP (ImpICP) method is a modification of
the previous algorithm of Section 3.3, which has been
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performedad hoc. In the previous subsection the im-
portance of having a good initial estimate was explained.
Besides, our method to compute this initial estimate was
described. However, the accuracy of the results obtained
is highly dependent on the goodness of the initial esti-
mate. For that reason, in this new version of the ICP
algorithm, we have increased the probability of obtain-
ing a desirable result. Particularly, we obtain three dif-
ferent initial estimates instead of only one. This is per-
formed by selecting three different pairs of correspon-
dences each case in the second step of the RANSAC al-
gorithm (Sec. 3.1), leading to three initial estimates. For
each initial estimate, the algorithm runs as in Section 3.3.
Finally, the solution selected is the transformation that is
supported by the highest number of correspondences.

4 EXPERIMENTS

The purpose of these experiments is to compare the per-
formance of the methods described in Section 3 as a tool
for aligning visual landmark-based maps. The initial sit-
uation is that the robots begin the construction of their
local maps independently and do not know their relative
positions. In practice, we want to evaluate the behav-
ior of the aligning methods at different steps of the map-
ping process. At the beginning, the maps built by each
robot have sparse landmarks resulting in a extremely re-
duced number of correspondent landmarks between both
maps. As a consequence, the alignment of these maps
will surely fail. However, this situation improves as the
size of both maps increases in such a way that there are
more coincident landmarks between both maps. In this
second situation, the map alignment is expected to be
performed successfully.

In order to carry out our experiments, the most prob-
able map of each robot is used to compute the transfor-
mation between both maps. This process is repeated in
several iterations of the FastSlam algorithm. The most
probable map is the map of the most probable particle of
the filter in each particular moment. The aligning meth-
ods described above compute the alignment parameters
tx, ty andθ. These parameters allow us to transform one
of the maps into the reference frame of the other one, thus
performing the map alignment stage. The accuracy of the
aligning methods is evaluated by means of the error in the
estimation of the alignment parameters. In our case, this
error is computed as the Euclidean distance between the
alignment parameterstx, ty andθ and the real relative
position between both robots. This real relative position
is what we callGround Truth and was obtained by cali-

−5 0 5 10 15
−4

−2

0

2

4

6

8
map 1

0 5 10 15 20
0

2

4

6

8

10

12

map 2

(a)

−10 −5 0 5 10 15 20 25
−2

−1

0

1

2

3

4

5

6

x (m)

y 
(m

)

(b)

Figure 1: Map alignment (2D view). Fig. 1(a) shows
two local maps before the alignment. Fig. 1(b) shows
the same maps after the alignment.

brating the relative position between the robots when be-
ing both in their initial positions. These initial positions
are the origin of the local reference frame of each robot.
The error of the alignment parameters regarding to the
Ground Truth is measured in meters.

The FastSlam algorithm is performed in several iter-
ations corresponding to the total number of movements
performed by the robot. In the experimentsk is an index
that denotes the order of the iteration. In our case, the to-
tal number of iterations isk = 1410 and the final sizes of
the maps aremap1 = 263 landmarks andmap2 = 346
landmarks. These maps have a dimension of35×15 me-
ters approximately. In Fig. 1(a) we can observe the local
maps constructed by each robot and referred to its local
frame. In this figure,map1 is represented by stars and
has181 landmarks. On the other hand,map2 is repre-
sented by circles and its size is of187 landmarks. Then,
Fig. 1(b) shows the result after aligning both maps. This
example corresponds to the iterationk = 810.

Fig. 2 illustrates the comparison of the aligning meth-
ods we want to evaluate. For each method, the error val-
ues (y axis)vs. the k-iteration of the algorithm (x axis)
are represented. Logically, as the number of iterations
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Figure 2: Evaluation of aligning methods.

increases, the size of the maps constructed will be higher
and therefore it will be more probable to find a solution
close to theGround Truth. For this reason, it is ex-
pected to obtain small error values as the k-iteration in-
creases. In Fig. 2 we can observe that the worst results
are obtained withSV D. For instance,SV D has a er-
ror of 4m with k − iteration = 1409, i.e., at the end
of the FastSlam algorithm. Next, ICP obtains similar re-
sults. However, it achieves better results in some cases.
For example, withk−iteration = 810 the error is lower
than1m. Then, the ImpICP algorithm outperforms these
previous methods, since it achieves really small error val-
ues. Nevertheless, RANSAC is the method that obtains
better results. Despite the fact that it gives no solution
with k− iteration = 60 (probably because the maps are
still too sparse in this iteration), the algorithm obtains the
smallest error values. In fact, fromk − iteration = 410
on the error is no higher than0.5m.

Finally, Fig. 3 focusses on the RANSAC algorithm re-
sults. Fig. 3(a) shows the number of correspondences
that support the estimate of the alignment parameters ob-
tained, i.e., the number of supports. The number of sup-
ports increases with thek − interation values as can be
observed in Fig. 3(a). On the other hand, Fig. 3(b) shows
the decomposition of the error in its three components,
i.e., the error in the estimate of each one of the alignment
parameterstx, ty andθ. Fig. 3(b) leads to the deduction
that the estimate of thety parameter is the most critical.

5 CONCLUSION

The main purpose of this paper was to evaluate and se-
lect a method for aligning visual landmark-based maps.
In order to perform these experiments we have used real
data collected by the robots in our building. The map-
ping process has been carried out with the FastSLAM al-
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Figure 3: Results obtained with RANSAC algo-
rithm. Fig. 3(a) shows the number of supports ob-
tained. Fig. 3(b) shows error in each component of
the alignment parameters.

gorithm. As a result, the RANSAC algorithm has proved
to be the most suitable tool in order to align this kind
of maps. The results presented by this algorithm have
shown small error values and a stable behavior along dif-
ferent number of landmarks in the maps.

As future work, our aim is to study the next stage
in map fusion, which isMap merging. This is a quite
challenging problem since maps built by different robots
should be merged into a single one.
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