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Abstract— This paper presents an approach to vision-based
simultaneous localization and mapping (SLAM). Our approach
uses the scale invariant feature transform (SIFT) as features
and applies a rejection technique to concentrate on a reduced
set of distinguishable, stable features. We track detected SIFT
features over consecutive frames obtained by a stereo camera
and select only those features that appear to be stable from
different views. Whenever a feature is selected, we compute
a representative feature given the previous observations. This
approach is applied within a Rao-Blackwellized particle filter to
make the data association easier and furthermore to reduce the
number of landmarks that need to be maintained in the map.
Our system has been implemented and tested on data gathered
with a mobile robot in a typical office environment. Experiments
presented in this paper demonstrate that our method improves
the data association and in this way leads to more accurate maps.

I. INTRODUCTION

Learning maps is a fundamental problem of mobile robots,
since maps are required for a series of high-level robotic
applications. As a result, several researchers have focused
on the problem of simultaneous localization and mapping
(SLAM). SLAM is considered to be a complex task due to
the mutual dependency between the map of the environment
and the pose of the robot. A large number of papers on SLAM
focused on building maps of environments using range sensors
like sonars and laser (see, for example, [6]–[8], [14], [17], [19]
for two-dimensional maps or [1], [5], [16], [18] for three-
dimensional maps).

This paper considers the feature-based SLAM problem
using stereo camera images. In general, cameras are less
expensive than laser range finders and are also able to provide
3D information from the scene using two cameras in a stereo
setting. Our map is represented by a set of landmarks whose
position is given by 3D coordinates (X,Y,Z) related to a
global reference frame. In our approach, we use distinctive
points extracted from these stereo images as natural landmarks.
In particular, we use the SIFT feature extractor provided
by Lowe [11]. We describe each landmark by two vectors.
The first one represents the 3D position of the landmark in
the map. The second vector is given by a SIFT descriptor,
which contains the visual appearance of the landmark. SIFT
descriptors are invariant to image translation, scaling, rotation
and partially invariant to illumination changes and affine
transformation.

Our system furthermore applies a Rao-Blackwellized parti-
cle filter, which has originally been introduced by Murphy,

Doucet, and colleagues [3], [15] as an effective means to
solve the SLAM problem. The key idea of this approach is
to estimate the joint posterior about the trajectory of the robot
and the map m of the environment given the observations and
odometry measurements.

One of the key problems, especially in feature-based SLAM,
is the problem of finding the correct data association. The
robot has to determine whether a detected landmark corre-
sponds to a previously seen landmark or to a new one. Often,
vision-based SLAM approaches use the Euclidean distance
of the SIFT descriptors as a similarity measurement. If the
squared Euclidean distance between both descriptors is below
a certain threshold, the features are considered to be the
same. This technique provides good correspondences in case
the feature has been observed from similar viewing angles.
Since SIFT descriptors are only partially invariant to affine
projection, the SIFT descriptor of the same feature may
be significantly different when observing it from different
viewpoints.

Figure 1 illustrates a feature recorded from different per-
spectives. In all the images, an identical point is marked with
a circle. The Euclidian distance of the descriptor vectors is
small between consecutively recorded images but around one
order of magnitude larger between the first and the last image.
This difference in the descriptor vectors can lead to serious
problems in the context of SLAM. For example, a robot may
be unable to make the correct data association when moving
through the same corridor but from different directions.

The key idea of this work is to track visual landmarks during
several consecutive frames and select only those features
that stay comparably stable under different viewing angles.
This reduces the number of landmarks in the resulting map
representation. In the map, we represent landmarks by a
representative descriptor given the individual observations.
This descriptor is then used to solve the global data association
problem. Instead of using the squared Euclidean distance
we propose to use an alternative distance measure which is
based on the Mahalanobis distance. This approach reduces the
number of false correspondences and consequently produces
better maps than an approach based on the Euclidian distance.

II. RELATED WORK

In the past, different approaches have been proposed to
solve the SLAM problem in 3D using visual information.
Little et al. [9], [10] also use a stereo vision system to track
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Fig. 1. This figure illustrates the dependency of the SIFT descriptor from the viewing angle. The images depict the same landmark (marked with a circle)
viewed from different viewpoints. The squared Euclidean distance between consecutive images is between 0.03 and 0.06. In contrast to that, the squared
Euclidean distance between non-consecutive images is between 0.3 and 0.4, which is around one order of magnitude larger.

3D visual landmarks extracted from the environment. In their
approach, the landmarks are represented by SIFT features
and an Euclidean distance function is used to find the SIFT
in the database that is closest to each landmark. Miró et
al. [13] used an extended Kalman filter (EKF) to estimate an
augmented state constituted by the robot pose and N landmark
positions using a method proposed by [2]. In this work, SIFT
features are used to manage the data association among visual
landmarks.

The work presented by Sim et al. [16] uses SIFT features
as distinctive points in the environment. It also applies a
Rao-Blackwellized particle filter to estimate the map of the
environment as well as the path of the robot. The movements
of the robot are estimated from stereo ego-motion. Compared
to these approaches, we actively track the visual landmarks
during several consecutive frames and select only those that
appear to be more stable. Based on this procedure, we reduce
the number of landmarks. We additionally apply the Maha-
lanobis distance in the data association.

Additionally, several authors have used a Rao-Blackwellized
particle filter to solve the SLAM problem. Montemerlo et
al. [14] applies a Rao-Blackwellized particle filter using 2D
point landmarks extracted from laser range data. Their system
was the first mapping system based on a Rao-Blackwellized
particle filter that was able to deal with large numbers of
landmarks. Hähnel et al. [7] applies the same filter but using
occupancy grid maps. In their approach, an incremental scan-
matching technique is applied to pre-correct the odometry. As
a result, the error in the robot motion is significantly reduced
so that a substantially smaller number of particles is needed to
build an accurate map. Recently, Grisetti et al. [6] proposed
a Rao-Blackwellized particle filter together with a selective
resampling to compute an informed proposal distribute and to
reduce the risk of the particle depletion problem. In contrast
to these approaches, the algorithm described in this paper
constructs 3D landmark maps using vision data extracted from
camera images. The major contribution of this paper lies in
the improvement of the data association. Due to the viewpoint-
dependent SIFT feature descriptor, our approach concentrates
on the features that appear to be stable under different viewing
angles. This approach reduces the risk of making a wrong data
association and consequently produces more accurate maps of
the environment.

The remainder of the paper is organized as follows. Sec-
tion III describes SIFT features and their utility in SLAM.
Section IV explains the basic idea of the Rao-Blackwellized
particle filter for SLAM. Then, Section V explains the track-
ing of SIFT features across consecutive frames. Section VI
presents our solution to the data association problem in the
context of SIFT features extracted from stereo images. Finally,
in Section VII, we present our experimental results.

III. VISUAL LANDMARKS

The scale invariant feature transform (SIFT) features was
originally developed for image feature extraction in the context
of object recognition applications [11], [12]. SIFT features are
represented by a 128-dimensional vector and are computed by
building an image pyramid and by considering local image
gradients. The image gradients are computed at a local neigh-
borhood that provides invariance to image translation, scaling,
rotation, and partial invariance to illumination changes and
affine projection.

Given two images (IL
t , IR

t ) from the left and right camera
of a stereo head captured at a time t, we extract landmarks
which correspond to points in the 3-dimensional space using
SIFT. Each point is accompanied by its SIFT descriptor and
then matched across the images. The matching procedure is
constrained by the epipolar geometry of the stereo rig. Figure 2
shows an example of a matching between the features of two
stereo images.

In our approach, we obtain at each point in time t a set
of B observations denoted by zt = {zt,1, zt,2, . . . , zt,B},
where each observation consists of zt,k = (vt,k, dt,k), where
vt,k = (Xr, Yr, Zr) is a three dimensional vector represented
in the left camera reference frame and dt,k is the SIFT
descriptor associated to that point. After calculating the stereo
correspondence, we calculate the 3D reconstruction of the
points using epipolar geometry.

IV. RAO-BLACKWELLIZED VISUAL SLAM

The goal of this section is to give a brief description of how
to use a Rao-Blackwellized particle filter to solve the SLAM
problem. Additionally, we describe how the map is represented
in our current system.



Fig. 2. Stereo correspondences using SIFT features. Epipolar geometry is
used to find correspondences across images.

A. Map Representation

According to FastSLAM [14], the map Θ is represented
by a collection of N landmarks Θ = {θ1, θ2, . . . , θN}.
Each landmark is described as: θk = {μk,Σk, dk}, where
μk = (Xk, Yk, Zk) is a vector describing the position of the
landmark in the global reference frame and Σk a covariance
matrix. In addition to that, a SIFT descriptor dk is added to
each landmark θk that partially differentiates it from other
landmarks.

B. Particle Filter Estimation

While mapping an environment, the robot has to determine
whether a particular observation zt,k = (vt,k, dt,k) corre-
sponds to a previously observed landmark or to a new one.
For the moment, we consider this correspondence as known
(we will drop this assumption in the following sections). Given
that at time t the map is formed by N landmarks, the corre-
spondence between the observations zt = {zt,1, zt,2, . . . , zt,B}
and the landmarks in the map, is represented by an index
vector ct = {ct,1, ct,2, . . . , ct,B}, where ct,i ∈ [1 . . . N ]. In
other words, at time t the observation zt,k = (vt,k, dt,k)
corresponds to the landmark ct,k in the map. When there is
no corresponding landmark, we denote it as ct,i = N + 1,
indicating that it is a new landmark.

Following the usual nomenclature of Montemerlo et al. [14],
st is the robot pose at time t and st = {s1, s2, . . . , st} is the
robot path until time t. The set of observations up to time t
is denoted as zt = {z1, z2, . . . , zt} and the set of actions as
ut = {u1, u2, . . . , ut}. We formulate the SLAM problem as
that of determining the locations of all landmarks in the map
Θ and robot poses st from a set of measurements zt and robot
actions ut.

The conditional independence property of the SLAM prob-
lem implies that the SLAM posterior can be factored as

p(st,Θ|zt, ut, ct) =

p(st|zt, ut, ct)
N∏

k=1

p(θk|st, zt, ut, ct). (1)

This factorization was first presented by Murphy [15]. It states
that the full SLAM posterior is decomposed into two parts:
an estimator for robot paths and N independent estimators
for landmark positions, each conditioned on the path esti-
mate. In the Rao-Blackwellized particle filter, one estimates
p(st|zt, ut, ct) by a set of M particles. Each particle maintains
N independent landmark estimators (implemented as EKFs),
one for each landmark in the map. Each particle is thus defined
as

S
[m]
t = {st,[m], μ

[m]
t,1 ,Σ[m]

t,1 , . . . , μ
[m]
t,N ,Σ[m]

t,N}, (2)

where μ
[m]
t,i is the best estimation at time t for the position

of landmark θi based on the path of the particle m and
Σ[m]

t,i is its associated covariance matrix. The particle set

St = {S[1]
t , S

[2]
t , . . . , S

[M ]
t , } is calculated incrementally from

the set St−1 at time t−1 and the robot control ut. Each particle
is sampled from a proposal distribution s

[m]
t ∼ p(st|st−1, ut).

Furthermore, a weight is assigned to each sample according
to

ω
[m]
t,i =

1√|2πZct,i
|

· exp
[
−1

2
(vt,i − v̂t,ct,i

)T Z−1
ct,i

(vt,i − v̂t,ct,i
)
]

. (3)

In this equation, vt,i is the actual measurement and v̂t,ct,i
is

the predicted measurement for the landmark ct,i based on the
pose s

[i]
t . The matrix Zct,i

is the covariance matrix associated
with the innovation (vt,i − v̂t,ct,i

). Note that the equations
presented above assume that each measurement vt,i has been
assigned to one landmark ct,i in the map. In Section VI, we
describe our approach to this problem. In the case that B
observations from different landmarks exist at a time t, we
calculate the total weight assigned to the particle as

ω
[m]
t =

B∏
i=1

w
[m]
t,i . (4)

In order to reduce the risk of particle depletion, we use the
approach proposed by Doucet [4] to trigger the resampling. We
compute the effective sample size and carry out a resampling
operation only of the resulting number is smaller than a
threshold (here chosen as M/2). In the context of mapping
with Rao-Blackwellized particle filters, this approach has first
been applied by Grisetti et al. [6].

V. TRACKING OF SIFT FEATURES

To obtain multiple observations of the same feature from
several view points, we track each SIFT feature along p
consecutive frames. For this purpose the robot takes two
stereo images and extracts a number of SIFT features from
them. Next, SIFT features that comply with the epipolar
constraint are matched across the stereo images. Two SIFT
features are matched from the left to the right image if
the Euclidean distance between the descriptors is below a
predefined threshold. This procedure has shown to be very
robust since both images are taken from very close points of



view and consequently their SIFT descriptors are similar [12].
Figure 2 shows the matching performed across two stereo
images. Once the matching is performed, a measurement
vt,k = (Xr, Yr, Zr) relative to the robot reference frame is
obtained for each SIFT point. After a short movement of the
robot given by (Δx,Δy,Δθ), we estimate the new coordinates
at time t + 1 vt+1,k = (X ′

r, Y
′
r , Z ′

r) given vt,k = (Xr, Yr, Zr)
as:⎛
⎝X ′

r

Y ′
r

Z ′
r

⎞
⎠ =

⎛
⎝(X − Δx) cos(Δθ) − (Z − Δy) sin(Δθ)

Y
(X − Δx) sin(Δθ) + (Z − Δy) cos(Δθ)

⎞
⎠ (5)

In the frame obtained at the next time step the SIFT point
is projected at image coordinates (r′, c′):(

r′

c′

)
=

(
v0 − f

Y ′
r

Z′
r

u0 + f
X′

r

Z′
r

)
, (6)

where f and the central point of the left camera are cali-
brated values. We then look for the SIFT points in a local
neighborhood of the predicted projection of the point (r′, c′).
Again, this matching is performed using the Euclidean dis-
tance, since the variation in the SIFT descriptor across two
consecutive frames is low, assuming the robot has performed
a short movement as explained before (see also the motivating
example given in Figure 1).

VI. DATA ASSOCIATION

While the robot moves through the environment, it must
decide whether the observation zt,k = (vt,k, dt,k) corresponds
to a previously mapped landmark or to a different landmark.
In most existing approaches, data association is based on the
squared Euclidean distance between SIFT descriptors

E = (di − dj)(di − dj)T , (7)

where di and dj are the SIFT descriptors.
Then, the landmark of the map that minimizes the distance

E is regarded as the correct data association. Whenever the
distance E is below a certain threshold, the two landmarks
are considered to be the same. Otherwise, a new landmark is
created. As explained in Section V, when the same point is
viewed from slightly different viewpoints and distances, the
values in its SIFT descriptor remain quite similar. However,
when the same point is viewed from significantly different
viewpoints (e.g., 30 degrees apart) the difference in the
descriptor is remarkable and the check using the Euclidian
distance is likely to produce a wrong data association.

We propose a different method to deal with the data associ-
ation in the context of SIFT features. We address the problem
from a pattern classification point of view. We consider the
problem of assigning a pattern dj to a class Ci, where each
class Ci models a landmark. We take different views of
the same visual landmark as different elements of class Ci.
Whenever a landmark is found, it is tracked along p frames
as shown in Section V, and its descriptors d1, d2, . . . , dp are
stored.

For the landmark represented by Ci we compute a mean
value d̄i and estimate a covariance matrix Si, assuming the
elements in the SIFT vector are independent of each other.
Whenever a new landmark dj is found, we compute the
Mahalanobis distance to each stored landmark, represented by
d̄i and Si as

L = (d̄i − dj)S−1
i (d̄i − dj)T . (8)

We compute the distance L for all the landmarks in the map
of each particle and assign the correspondence to the landmark
that minimizes L. If none of the values exceeds a predefined
threshold, we consider it as a new landmark. As we will show
in the experiments, this technique allows us to make better
data associations and as a result produce better maps of the
environment.

VII. EXPERIMENTAL RESULTS

To carry out the experiments, we used a B21r robot
equipped with a stereo head and an LMS laser range finder. We
manually steered the robot through the rooms of the building
79 at the University of Freiburg. For each pair of stereo images
we calculated the correspondences and the feature tracks over
5 consecutive frames to improve the stability of the SIFT
points. As mentioned in Section VI, each descriptor is now
represented by dt,i = {d̄t,i, Si} where d̄t,i is the SIFT vector
computed as the mean of the p views of the same landmark
and Si is the corresponding diagonal covariance matrix.

In our first experiment, we apply the Rao-Blackwellized
particle filter to create the map using our data association
method. A total of 507 stereo images at a resolution of
320x240 were collected. The distance traveled by the robot
is approximately 80m. Figure 5 shows the results with 10,
and 100 particles. A total number of 1500 landmarks were
estimated. It can be seen that, with only 10 particles, the
map is a good approximation. In the figures, some areas of
the map do not possess any landmark, which correspond to
feature-less areas (i.e., texture-less walls), where no SIFT
features have been found. Compared to preceding approaches,
our method uses less particles to achieve good results. For
example, in [16], a total of 400 particles are needed to compute
a topologically correct map, while correct maps have been
built using 50 particles with our method. In addition, our maps
typically consists of about 1500 landmarks, a substantially
more compact representation than obtained with the algorithm
presented in [16], in which the map contains typically around
10.000 landmarks.

We additionally compared the estimated pose of our method
with the estimated pose using a Rao-Blackwellized filter with
observations consisting in laser range data as described in work
of Grisette et al. [6]. Figure 3 shows the error in position using
our approach in comparison with the position using laser data.
As can be seen, the absolute error is maintained always under
0.6m.

In a second experiment, we compared both distance func-
tions, namely Euclidean and Mahalanobis, for solving the data
association problem. For both approaches, we tracked SIFT
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Fig. 3. Figure shows the position error using our approach in comparison
with the position using laser data (continuous line). For comparison, we also
plot the error in odometry (dashed).
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Fig. 4. The figure shows the RMS error in localization depending on the
number M of particles. The results using Equation (7) are shown as a dashed
line and results using Equation (8) are shown as a continuous line.

features and calculated the Root Mean Square (RMS) error of
the position of the robot with respect to the position given by
the localization using laser data. To do this, we made a number
of simulations varying the number of particles used in each
simulation. As can be seen in Figure 4, we obtained better
localization results for the same number of particles when the
Mahalanobis distance is used.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we presented a solution to the SLAM problem
based on a Rao-Blackwellized particle filter that uses visual
information extracted from cameras. In particular, we track
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Fig. 5. Whereas Figure (a) shows a map created using 10 particles, Figure
(b) has been created with 100 particles. We also superposed the real path
(continuous) and the estimated path using our approach (dashed). Figure (c)
shows the real path (continuous) and the odometry of the robot (dashed).



SIFT features extracted from stereo images and use those that
are stable as landmarks. To solve the data association problem
when the robot closes a loop, our approach calculates SIFT
prototypes and applies the Mahalanobis distance for calculat-
ing the similarity between landmarks. As a result, the data
association is improved and we obtained better maps, since
most wrong correspondences can be avoided more reliably.
In practical experiments, we have shown that our approach is
able to build 3D maps.

Despite these results, we are aware that there still are
important issues that warrant future research. For example,
the maps created by our algorithm do not correctly represent
the occupied or free areas of the environment. For example,
featureless areas such as blank walls provide no information
to the robot. In such environments, the map cannot be used
to localize the robot. We believe, that this fact is originated
from the nature of the sensors and it is not a failure of the
proposed approach. In such environments, alternative sensors
like sonars might be needed for navigation.
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