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Abstract. This paper presents an approach to the integrated exploration problem for
a team of mobile robots. This technique is based on a combination of several basic be-
haviours that model a potential field. These behaviours are designed to quickly explore
the environment jointly with a visual SLAM technique. As a novelty, this method con-
siders returning to previously explored areas when the localization uncertainty is high.
Consequently, the accuracy obtained in the construction of the maps is higher than with
other classical exploration techniques. The known problem of local minima in potential
field based techniques is also considered. In this sense, a strategy of detection and escape
from local minima is used. Several simulations show the validity of the approach.

Keywords: integrated exploration, cooperative robots, potential fields, behaviour
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1. INTRODUCTION. During the last years, applications that require the deployment
of mobile robots have become more frequent. These approaches require the navigation
through unstructured and unknown environments in which the task of exploration is
crucial. Exploration consists in the coverage of an unknown environment by a robot or a
group of mobile robots building a common map at the same time. The use of a team of
robots is an advantage [1], since the exploration time can be reduced and the precision
of the maps can be improved [2]. Exploration techniques can be applied to surveillance,
search and rescue services, map building or planetary exploration.

The problem of exploration is related to the Simultaneous Localization and Mapping
(SLAM). The maps built by a robot while it is exploring the environment can consist
of occupancy grids from the information supplied by range sensors or they can consist
of visual features from the environment [3]. Figure 1 graphically shows the concepts of
exploration and SLAM and how they are related [4, 5]. On the one hand, SLAM techniques
are able to build a map and locate the robots within it, nevertheless they are passive
due to the fact that they do not control the motion of the robots. On the other hand,
classic exploration algorithms direct the robots trying to perform a fast coverage of the
environment. However, the SLAM algorithms are affected by the performed trajectories.
That means that the results in terms of accuracy depend on the trajectories followed by
the robots [4]. Even though path generation and following has been studied as the case of
parallel robots [6], the trajectories performed by the robots when they explore a completely
undetermined environment play an essential role. In this sense, when the robots travel
through unknown environments the localization uncertainty continuously grows. This
fact may lead to inaccurate or useless maps. Therefore, in order to obtain a precise map
it is necessary that the robots make also movements considering the uncertainty in their
localization. As Figure 1 shows, the exploration algorithms that take into account all
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Figure 1. The figure shows the concept of integrated exploration and its
relation with the SLAM.

these aspects of the SLAM are commonly called Integrated Exploration Algorithms [5].
This paper is focused on the Integrated Exploration problem for a team of mobile robots.
The objective of this approach is to decide appropriate control actions for each robot of

the team in order to map the desired area with full coverage. We propose in this paper a
method to resolve this problem using a coordinated and integrated model. The planning
of the control actions coordinates the movements of the robots in such a way that they
spread over the environment performing a fast coverage. At the same time the motion
control is integrated with the SLAM algorithm by means of considering the uncertainty in
the position of the robots. The robots try to keep their uncertainty below a certain value
so that a bad localization does not cause an inaccurate and completely worthless map.
In order to reduce the uncertainty, the algorithm is designed to make the robots return
to previously explored zones when the localization uncertainty is too high. By returning
to previously explored areas the uncertainty is reduced. Thus, we improve the quality of
the built map.
Some authors only perform a classic exploration, that is moving the robots while map-

ping the environment without improving the odometric localization [7]. Other techniques
include classic exploration simultaneously with SLAM techniques [8]. However, in con-
trast to integrated exploration approaches [9, 5], they do not consider the uncertainty
of the SLAM when selecting the movements of the robots. Other authors have focused
its research in coordinating the team of robots [10, 11]. However, very few papers have
discussed a cooperative and integrated exploration in the same approach [12]. The main
contribution of this paper is that we have implemented it using relative low cost sensors
(only sonar and a stereo camera) and in contrast to [12] that uses a complex and com-
putationally expensive deliberative planning our technique is implemented as a simple
reactive behaviour based system.
The remainder of this paper is structured as follows. Section 2 presents the state of the

art in the field of exploration. In Section 3 the proposed approach is explained in detail.
Section 4 presents the experiments that were carried out to test the method and their
results. Section 5 analyses the performance of the technique and compares it with other
techniques. The main conclusions and future works are exposed in Section 6.
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2. RELATED WORK. The great majority of the exploration techniques use the fron-
tier concept introduced by Yamauchi [13]. Using an occupancy grid map, frontiers can be
defined as free cells next to an unknown cell. Since these cells lead to the unknown areas
of the environment, which are the objective of the exploration, a good strategy consist in
planning paths that lead the robot to frontier cells.

When using a team of robots, the problem is extended to how to coordinate them to
reduce the exploration time or improve the quality of the map. In that sense, either a
centralized or a distributed approach [14] could be used. Furthermore, considering the
planning level we can classify the exploration techniques in two groups:

• Deliberative: The exploration is directed by a high level layer of the architecture that
evaluates a long term motion planning with full knowledge of the global estimated
map and positions of the robots. A low level reactive layer may be used to avoid
dynamic obstacles.

• Reactive: The exploration is led by low level behaviours that work in real-time with
a partial knowledge of the map and evaluating only a short term movement.

In the first group, the usual operation mode consist in planning a path to a frontier cell.
These techniques differ in the way they coordinate the robots, assigning them different
frontiers. In [7, 8] the nearest frontier is used. It is also possible to use a cost-utility
model where the cost is the length of the path to achieve a frontier and the utility can
be related to the expected information gain from the frontier [15, 16], or a function of
the frontiers assigned to other robots [10]. An agents model, where the robots negotiate
the assigned frontiers [11], can also be used. Another way to select the next goal can be
using a Sensor-Based Random Tree [17] where the environment is explored in a depth-first
search manner.

In the second group, the exploration is carried out with basic reactive behaviours that
are usually modelled as potential fields [18]. In [19] the behaviours: Probe(Go to free
space) and Avoid Past (Rejection from previously explored zones) are used in addition to
common behaviours as a repulsive Avoid obstacles behaviour. In [20] the frontier concept
is used through a Move to frontier behaviour and an Avoid Other Robots behaviour that
spreads the robots over the environment. However, using this kind of behaviours, local
minima are likely to appear. A local minimum takes place when the behaviours cancel each
other in such a way that a point of minimum potential appears. Since the robots travel
following the zones of lower potential they may be blocked in that points. A common
solution to this problem is to plan a path to the nearest frontier [21]. Another solution
to this problem but more inefficient is using a wall following strategy [22]. Harmonic
functions have also been used for designing systems without local minima [23]. However,
they need to update a global potential field, so it may present low scalability and a high
computational cost. Furthermore, the potential fields generated with harmonic functions
can not be added preserving their properties. Therefore, it is difficult to integrate this
technique with a multi-objective behaviour.

As we explained in Section 1, classical exploration approaches always direct the robots
trying to maximize the information gain but they do not take into account the quality
of their localization. Since the accuracy in the SLAM problem is affected by the trajec-
tories of the robots, it is necessary that the robots make also movements considering the
uncertainty in their localization. As we said, this kind of techniques are called Integrated
Exploration Algorithms. In the field of integrated exploration, several techniques have
been applied. In [4] the uncertainty is reduced by actively closing loops with previously
explored areas using a topological map. In [24] the certainty over the pose of the robots
during an exploration that uses a parametric curve trajectory is recovered. This is carried
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out by means of modifying the parameters in order to return to previously explored zones.
In [5] the uncertainty in the localization is included as a part of a cost-utility model in the
assignment of destinations to robots. In [25], using a sensor based tree, the candidates
points to expand the tree that are situated near precise landmarks have higher priority.
A complex utility function that considers the number of landmarks that are observable
in a path to potential targets near the frontiers is used in [12]. These potential targets
are evaluated in a decision tree considering the utility of being reached from the different
robots of the team in first term or after visiting other destinations.
Other authors have focused in other problems that appear when using a team of robots.

For instance, [26] considers the case of a constrained communication network range and
introduces some role changing to regroup the robots and restore the communication. In
[14], the initial positions of the robots are considered as unknown. In this case each robot
has to built its own map. When two robots meet they align and fuse their maps. Other
authors deal with non-Markovian sequential task as for instance in [27] where a recurrent
neural network is used.

3. APPROACH. Figure 2 shows the structure of the architecture used in this approach.
As it can be seen, our technique consists of the set of robots and a central unit running
a multi-robot SLAM algorithm. The robots consist of a differentially driven platform
equipped with a stereo camera, 8 sonar sensors, that cover 180 degrees in front of the
robot, and a odometry sensor. The readings of the odometry, sonar and the 3D positions
of the landmarks extracted from the images captured with the stereo camera of each robot
are sent to the central unit through a local network. At the central unit a centralized
SLAM process builds a set of maps and localizes the robots in them. As the maps are
built cooperatively, each robot benefits from the information of the other robots. These
maps and the localization information are broadcast. Thus, in the system each robot
knows the maps and the position of all the robots of the team. Each robot runs a
reactive behaviour-based motion control algorithm to obtain the appropriate movement
commands. We have chosen a reactive approach because it allows to integrate multiple
objectives simultaneously as simple behaviours. First of all, different sets of behaviours
are activated depending on the state of a finite state automata (FSA). Then, the active
behaviours are combined obtaining a desired new direction. With the purpose of avoiding
local minima that could be produced from that combination of behaviours, a local minima
detector activates an auxiliary path planning module to escape from local minima. Finally,
a controller sends appropriate control actions to move the robot in the desired direction.

3.1. SLAM. As we previously mentioned, each robot is equipped with a stereo vision
system. With this sensor, we can identify visual feature points, obtain pairs of matching
features between the images and determine its 3D position in the space with a good
precision. For this reason, the process of localization of the robots is performed with
the visual landmarks information extracted from the images of the cameras. A SLAM
algorithm consisting in a Rao-Blackwellized particle filter that creates a visual landmark
map and returns the positions of the robots is used for this purpose. This SLAM technique
is centralized using the data of all the robots [28]. Furthermore, in order to navigate
avoiding obstacles we need also an occupancy map. Using the localization returned by
the visual SLAM and the sonar readings an occupancy grid mapping technique is applied.
Finally, we also use an auxiliary map consisting in a binary grid to save positions where
we can localize the robots with a good precision. So three different maps are employed
in the proposed integrated exploration algorithm: a visual landmarks map, an occupancy
gridmap and finally a past precise poses map.
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Figure 2. Architecture

3.1.1. Visual Landmarks Map. Landmark-based maps are used to represent the environ-
ment. This kind of map consists of a cloud of 3D points corresponding to the estimated
positions of the detected landmarks along with its covariance. The visual landmarks can
be extracted using stereo cameras with appropriate feature detectors. A visual descriptor
can help during the matching process. For instance in [29], after an analysis of feature
detectors and visual descriptors, the Harris corner detector and the SURF descriptor are
recommended. In our simulations we use a set of predetermined landmarks randomly po-
sitioned over the obstacles of the virtual environment with a fixed descriptor. We assume
that the robots are able to detect landmarks in a range of 8m. We take into account that
the obstacles in the environment may block the visibility of the landmarks.

In this paper, we carry out the SLAM by means of a Rao-Blackwellized particle filter
using the model exposed in [28]. The approach was based on the FastSLAM algorithm
[30] but using visual landmarks and extended to multiple robots. As this SLAM algorithm
is processed jointly in a centralized way, the robots take advantage of the data gathered
by the other robots to achieve a better localization. The basic idea of the FastSLAM
algorithm is that the SLAM problem can be decomposed into two parts: the estimation
of the paths followed by the robots, which is represented by a set of particles that evolves
with the control actions given to the robots, and the estimation of a landmarks map
associated to each one of the possible paths using an extended Kalman Filter for each
landmark. This way, we have a visual landmark map for each particle. The particles are
weighted according to the innovation of the new observations and subsequently they are
resampled. The full explanation of this technique can be found in [28]. The results of this
SLAM algorithm are the corresponding to the most probable particle, that is, the most
probable positions of each robot and the most probable visual landmark map with their
uncertainty.

3.1.2. Occupancy Gridmap. The visual landmarks map does not represent the occupation
of the environment, that is, whether an area can be safely traversed by the robots or not.
In order to move the robots safely we need this information. For this reason we use also an
occupancy grid map that represents the occupation probability of the space [31, 32]. To
build this map we use the measurements of a sonar with a range of 5m and the approach
of Moravec and Elfes [31]. This algorithm builds a map considering the positions of the
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Figure 3. Localization hysteresis model

robots given by the visual SLAM algorithm. We run the algorithm for each particle of the
filter having a different occupation map per each particle. We use the map corresponding
to the most probable particle for the motion control.
Depending on the occupation probability for each cell, we can classify the cells as free

(less than 50% of occupancy probability), occupied (more than 50%) or unknown (50%).
With this information, frontier cells are defined as the free cells that are contiguous to
one or more unknown cells. As this map is also broadcast to all the robots, they know the
frontiers generated by the actions of the other robots. In this manner, the robots know
which zones have already been visited by other robots and they can determine appropriate
actions in order to contribute to the team exploration task.

3.1.3. Past precise poses map. When the robots travel through unknown environments
their localization uncertainty grows. Sometimes, when the localization of a robot is too
poor we will need to guide the robot to previously explored zones in order to reduce its
uncertainty. This way, provided that the robots are the most of the time well localized
the accuracy of the map improves.
We can measure the quality of the localization of the robot by means of evaluating the

standard deviation of its position in the particle filter (σr):

σr =

√

√

√

√

1

M

M
∑

i=1

(xr
i − xr)2 + (yri − yr)2, (1)

where M is the number of particles, (xr
i , y

r
i ) is the position of the robot r in particle i,

and (xr, yr) is the mean position of the robot with all the particles.
Following a hysteresis model as shown in Figure 3, we have experimentally fixed two

localization thresholds (Tha, Thb) that determine when a robot is considered to have a
good or a poor localization. In order to reduce the uncertainty in the localization of
the robots, we need to save positions where we know that the robot is able to reduce it.
Therefore, we save in a binary grid map the past positions where the robot position had
a standard deviation below the low threshold Thb. The other threshold (Tha) indicates
when the robot is too bad localized and we have to initiate the action of going to the past
precise poses stored in this map to recover a good localization. This process concludes
when the robot reduces its uncertainty below Thb and is considered again as well localized.
Note that, as all maps are shared by all the robots, the robots can go to past poses of the
other robots to reduce the uncertainty in their positions.

3.2. Design of Behaviours. Our approach to the exploration problem consists of several
basic behaviours. Each behaviour considers one aspect of the exploration and evaluates
a motion pattern defined by a potential field. These potential fields are generated by
simple discrete gaussian functions, which are easily adjustable by means of the desired
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width and amplitude. The width of the gaussian for each behaviour is related to the
desired influence radius. To begin, we can use an unitary amplitude in the design phase
and let the coordination phase to weight the behaviours. However we have to pay attention
to the sign of the gaussian. A positive sign means a repulsive behaviour (high potential),
whereas a negative amplitude means an attractive behaviour (low potential).

Thereby, using this simple potential field approach, 6 basic behaviours have been de-
fined:

• Go to Frontier : Frontier cells attract the robots since these cells lead the robot to
new zones to explore. We can evaluate the potential field as follows:

P1(i, j) = −
∑

k∈cf

exp

(

−
(i− ki)

2 + (j − kj)
2

2σ2

1

)

, (2)

being P1(i, j) the potential in the cell (i, j) associated to this behaviour, σ1 the width
for this behaviour, cf the subset of frontier cells, and (ki, kj) the coordinates of the
cell k.

• Go to Unexplored Cells : This behaviour considers the unexplored cells as a point of
attraction. This way the less explored areas have a higher priority. The correspond-
ing potential field is:

P2(i, j) = −
∑

k∈cu

exp

(

−
(i− ki)

2 + (j − kj)
2

2σ2

2

)

, (3)

where P2(i, j) is the potential in the cell (i, j) associated to this behaviour, σ2 is the
width for this behaviour, and cu is the subset of unexplored cells.

• Avoid Obstacles : In order to prevent collisions, the occupied cells repulse the robots.
This way, the potential field is evaluated as:

P3(i, j) =
∑

k∈co

exp

(

−
(i− ki)

2 + (j − kj)
2

2σ2

3

)

, (4)

being P3(i, j) the potential in the cell (i, j) associated to this behaviour, σ3 the width
for this behaviour, and co the subset of occupied cells.

• Avoid Other Robots : The purpose of this behaviour is to spread the robots over
the environment. This way, the subset cr of cells, where other robots are situated,
repulses the robot using the following potential field:

P4(i, j) =
∑

k∈cr

exp

(

−
(i− ki)

2 + (j − kj)
2

2σ2

4

)

, (5)

where P4(i, j) is the potential in the cell (i, j) associated to this behaviour and σ4

is the width for this behaviour. This behaviour is introduced in order to coordinate
the actions of the robots. This way each robot explores a different part of the
environment.

• Go to Precise Pose: In order to achieve a good localization and consequently a
good map, the subset of past precise cells cp attracts the robots. The corresponding
potential field is:

P5(i, j) = −
∑

k∈cp

exp

(

−
(i− ki)

2 + (j − kj)
2

2σ2

5

)

, (6)
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Table 1. Widths chosen for each behaviour

Behaviour σb(m)

1 Go to Frontier 4.5
2 Go to Unexplored Cells 1.65
3 Avoid Obstacles 0.15
4 Avoid Other Robots 3.45
5 Go to Precise Pose 3.45
6 Go to Goal 3.45

Table 2. Weights chosen for each behaviour

Behaviour λb

1 Go to Frontier 3
2 Go to Unexplored Cells 1
3 Avoid Obstacles 100
4 Avoid Other Robots 2
5 Go to Precise Pose 0.5
6 Path Following 5

being P5(i, j) the potential in the cell (i, j) associated to this behaviour and σ5 the
width for this behaviour.

• Path Following : Sometimes, the robots will need to trace a route over a sequence of
cells, as for instance when escaping from singularities. We will use this behaviour in
order to attract the robot to the next cell in the sequence. Therefore the potential
field is:

P6(i, j) = −
∑

k∈cg

exp

(

−
(i− ki)

2 + (j − kj)
2

2σ2

6

)

, (7)

being P6(i, j) the potential in the cell (i, j) associated to this behaviour, σ6 the width
for this behaviour, and cg the next goal cell in the path.

As we said, the width of the gaussian for each behaviour is related to the desired
influence radius. This radius can be considered as 3σ. This way Table 1 shows the widths
selected for each behaviour. These values have been chosen empirically.

3.3. Behaviour Coordination. Several techniques can be applied to the fusion of be-
haviours as for instance subsumption, voting, weighted summation or fuzzy logic [33, 34,
35, 36]. In our case, we have demonstrated experimentally that a simple coordination
consisting in the weighted summation of the potential generated by each behaviour is
enough when setting the appropriate width (σb) for each behaviour. The weight for each
behaviour ki represents its relative importance. Table 2 shows the weights empirically
chosen for each behaviour. These constants were obtained after an experimental adjust-
ment process with different scenarios and different initial conditions. This way the global
potential field is composed as follows:

P =
∑

b

ebλbPb, (8)

where Pb is the potential field for behaviour b, λb is its weight, and eb is a term that takes
only the value 0 or 1 and designates whether the behaviour b is enabled or not.
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(a) (b) (c)

Figure 4. Example of potential field. a) Occupancy grid map and other
robots positions. b) Corresponding potential field. c) Map of the gradient
of the potential field (advance direction)

Figure 4 shows an example of the global potential field and gradient generated taking
into account the occupancy grid map and the positions of the robots. It can be observed
how the frontiers and the position of the other robots affect the potential field.

However, it is not necessary to evaluate this potential field for each cell of the map. In
practice only the local potential field will be computed. We use a small window of 7 × 7
cells centred in the cell where the robot is situated using a 0.15cm resolution. Thus, we
calculate the potential value of each active behaviour and their weighted addition only
for these cells. Furthermore, when the potential for each behaviour in each one of the
cells of this local window is calculated, and, in order to guarantee a reactive behaviour
working in real time, we can despise the cells that lie out of the radius of influence (3σ)
of the behaviour that has the wider gaussian. The desired change of orientation for the
robot θd will be the one that points to the cell of minimum potential in the proximities
of the robot:

θd = arctan

(

Pm
y − P r

y

Pm
x − P r

x

)

− θr, (9)

where θr is the current orientation of the robot, (P r
x , P

r
y ) are the coordinates of the robot

in this local potential reference frame, and (Pm
x , Pm

y ) are the coordinates of the point of
minimum potential. Note that we have a discretised representation of the environment
and a discretised representation of the potential field in a local window. However, as the
robot is situated inside the central cell of this window, the coordinates (P r

x , P
r
y ) represent

its exact continuous position in this reference frame. In the same way, the coordinates
of the point of minimum potential (Pm

x , Pm
y ) are obtained by means of interpolating the

potential values of the contiguous cells. This way we obtain the exact position in a
continuous state.

Finally the sequent control laws define the control command given to the robot:

ω =

{

kωσd if kωσd < ωmax

ωmax else
(10)

ν =
νmax

kν |σd|+ 1
(11)

where kω, kν , νmax and ωmax are constants experimentally adjusted for a god control of
the differentially driven robot platform.
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Figure 5. Representation of the potential field in the local window during
an exploration process with tree robots. Robot 1 detects a local minimum
and plans a path to the nearest frontier cell.

3.4. Behaviour Arbitration. Not all the behaviours defined in section 3.2 are active all
the time. In this sense, we propose an arbitration scheme that decides what behaviours are
enabled at each moment. In the case of the integrated exploration problem, we consider 3
possible states that are related to different sets of active behaviours, which are associated
to different tasks. Firstly the exploration of the unknown environment, secondly the
preservation of a good localization of the robots, and finally, the prevention of getting
blocked by a local minimum.
In these situations with several robots working together to explore a common envi-

ronment, local minima are likely to appear. For instance, the movements of a robot can
generate a frontier behind a wall where there is another robot. In this case, the go to fron-
tier and avoid obstacles behaviours compensate each other generating a local minimum
in the resultant potential field at that point. Consequently, this other robot would remain
blocked in that position until the frontier that generates the local minimum is removed
by other robot. This fact may cause that the robot does not contribute to the exploration
for a while or even that the exploration task could not be finished if all the robots get
blocked. Figure 5 shows an example of a blocked robot during an exploration process
with three robots. The figure shows the shared occupancy grid map with the positions
of the three robots. A representation of the local potential field for each robot can be
seen on the right of the figure as grey scale images. These images show the evaluation of
the discretised potential field in a small window centred in the cell where each robot is
situated as explained in Section 3.3. The grey level indicates the potential field. In this
way, the darker zones in each image are the zones of lower potential in the surroundings
of each robot. We can see in the image for robot 1 that a local minimum is situated in
the position of the robot, since the cell of minimum potential appears in the centre of the
image. This local minimum is generated by the cancellation of the attractive behaviour
to the frontier that is behind the wall with the repulsive behaviour from those cells that
are occupied because of that wall. Since the robot travels following the zones of minimum
potential, this local minimum blocks the robot.
For that reason, when a local minimum is detected we need a state to let the robot

escape from that minimum. This state will consist in following a planned path in order to
get the robot out of this minimum. Consequently, we have considered 3 possible states:
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Table 3. Possible states

State Behaviours

A. Exploration Go to frontier
Go to unexplored areas
Avoid other robots
Avoid obstacles

B. Active Localization Go to precise poses
Avoid obstacles

C. Escape from Path Following
Local Minimum Avoid obstacles

• A: Exploration: This state performs a reactive exploration. In this state the be-
haviours: Go to Frontier, Go to Unexplored Zones, Avoid Other Robots and Avoid
Obstacles are enabled.

• B: Active Localization: This behaviour guides the robot to past precise poses when
the robot is poorly localized. It uses the Go to Precise Pose and Avoid Obstacles.
This is used to reduce the uncertainty in the position of the robots.

• C: Escape from Local Minimum: This state is used to escape from a local minimum
when it is detected. In this state the robot follows a planned path that leads it to
a target cell. The target cell is selected depending on the localization uncertainty.
When the uncertainty is low we use the nearest frontier cell, but when the robot is
poorly localized the nearest past precise pose cell is selected as target. The active
behaviours are Path Following and Avoid Obstacles.

Table 3 summarizes the possible states and the behaviours that are enabled in each case.
These three states are sequenced in a finite state automata (FSA). Figure 6 shows this FSA
for the integrated exploration problem. As we can see, the comparison of the dispersion in
the position of the robots with the high (Tha) and low (Thb) thresholds triggers between
the well localized part of the diagram (upper side) and the poor localized part (lower side).
Furthermore, a local minimum detector triggers the Escape from Local Minimum state.
We need to set a goal for the path followed by the Escape from Local Minimum behaviour.
However, this goal must be set accordingly with the degree of localization. Consequently,
we have separated the Escape from Local Minimum state in two cases when the robot is
well localized (C) and when the robot is poorly localized (C ′). In the first case, the most
appropriate action is to plan a path to the nearest frontier cell. In the second case, the
path is planned to a past precise pose cell. The completion of the escaping route returns
the robot to its previous state.

The detection of local minima is made by analysing the potential field in the neigh-
bourhood of the robot. As can be seen in Figure 5, the cell of minimum potential usually
is situated in the border of the local area. However, when the cell of minimum potential
appears in the centre of the local window we can identify a local minimum. In this way,
when the position of minimum potential in this window is very close to the robot position
we consider that the robot is trapped by a local minimum. This detection technique is
immediate, as we already have the local potential field. In the case of detecting a local
minimum, the robot determines its nearest frontier (or past precise pose) and the shortest
path to arrive to it using the Dijkstra’s Algorithm [37].
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Figure 6. Finite state automata that controls the sequence of active behaviours

Figure 7. Simulation environments

4. EXPERIMENTS.

4.1. Test bench. This method has been tested in simulation. Figure 7 shows the sce-
narios used in the tests. Scenarios that represent hypothetical real places like Scenario
1 or Scenario 2 were chosen. Other artificial scenarios as for instance Scenario 3, which
may cause a lot of local minima, or a completely random scene as Scenario 4 were also
selected. All the scenarios, with fixed dimensions of 20× 25m, have a predetermined set
of approximately 100 landmarks randomly positioned over the obstacles. Each landmark
is identified with a visual descriptor.
The simulated robots move with a linear speed limited to 0.05m/s and the angular

speed limited to 0.03rad/s. Each robot has a sonar that consists of a set of 8 sensors with
a maximum range of 5m that cover the front of the robot. These sensors are situated at
fixed intervals (with regard to the advance direction) from π/2 to −π/2rad. Furthermore
the robots have a simulated stereo camera looking forward that is used to detect the
landmarks within a range of 8m. We consider that the visual descriptor can be extracted
perfectly. In addition, a perfect data association between the stereo images and the visual
landmarks map is obtained.
Regarding the visual SLAM, the number of particles used in the particle filter were

proportional to the number of robots Nr. This way we have more particles to represent
suitable combinations of the robots paths. Theoretically the number of particles should
be exponential with the number of robots. However, using an exponential relationship is
computationally not feasible. Thus, considering that the distance travelled will be shorter
as the number of robots grows and that possible observations of the same landmarks can
improve the results, we have chosen a linear number of particles M = 500Nr. The
occupancy grid map is obtained with a resolution of 15cm.
The exploration algorithm presented in this paper was adjusted with the parameters

specified in Table 1 and Table 2. The localization thresholds were empirically set to
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(a) (b)

Figure 8. Trajectories of 2 robots (a) and 3 robots (b) in scenario 1.

Tha = 0.6m and Thb = 0.3m. These values are estimated with an experimental tuning
process analysing several situations and environments. With these values the robots can
return to previously explored areas when they have a high uncertainty in their localization.
The level of these values affects the number of times the robot returns to already explored
areas. The selection of small thresholds leads to accurate maps as the robot keeps always
a lower uncertainty, but increases significantly the exploration time.

Experiments were performed for each scenario varying the number of robots in the
team from a group of 1 to a group of 4 robots. Each experiment was performed 20
times changing the initial positions of the robots. However, the robots always start the
exploration in near locations. All the results presented hereafter are the average of all
these simulations. To consider that an scenario has been fully explored we need to set
an exploration ending condition. In this sense, when there is no remaining frontiers, the
robots usually tend to go to a local minimum. In this case, as there are no remaining
frontiers, the Dijkstra’s Algorithm does not find any frontiers. This way, the case of no
frontiers found by the Dijkstra’s Algorithm is taken as the exploration ending condition.

The experiments were carried out using a simulation time with a fixed time period of
1s. That means that independently of the time needed for the calculations we assume
that the elapsed time between data acquisition and the new commands given to the
robots is fixed. The exploration algorithm to decide the movements of the robots is fast
enough to operate in real time at this frequency. However, the map building algorithm is
the bottleneck for the whole architecture. When using a large number of robots with a
high number of particles and specially when the number of landmarks in the visual map
becomes significant the time needed for the calculations is higher than the established
period using a 2.6GHz processor. However, some improvements could be done as the
parallelization of the SLAM algorithm.

Next, we analyse the results in terms of exploration speed, which depends on the quality
of robot coordination. Afterwards the quality of the obtained maps will be studied.

4.2. Multirobot Coordination. Figure 8 shows an example of the trajectories per-
formed by the team of robots in Scenario 1. We can observe that the robots are able
to coordinate themselves and they explore different zones separately. The robots try to
avoid each other and they spread themselves over the environment. They only work at
the same areas at the end of the exploration when few frontiers remain to be explored.

To visualize how good is the coordination we can pay attention to the exploration
time. It can be measured as the necessary number of time units needed to complete the
exploration. Figure 9(a) shows the average exploration time needed by the robots in each
one of the scenarios while changing the number of robots that make up the team. As
it can be seen, the exploration time for each scenario reflects their different complexity
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(a) (b)

Figure 9. Time elapsed to complete the exploration and team exploration
speed gain

level. For instance, Scenarios 1 and 2 need more time, since their structures force the
robots to trace back their paths at each dead end. It can also be seen in the same figure
how the exploration time changes with the addition of robots. As it was expected, in all
the scenarios the exploration time decreases gradually when the number of robots grows.
To effectively measure the coordination independently of the length required for the

paths in each scenario, it can be compared the exploration time needed by the team tn
and the exploration time for a single robot t1. This means that using n robots supposes a
gain gn = t1/tn. In this sense, a gain gPC

n = n would be expected in a perfect coordination,
that is, n robots should do the task n times faster than 1 robot. For a non coordinated
algorithm with the robots starting in close positions it is likely that all the robots make
very similar paths. That would lead to a gain gNC

n ≈ 1.
Figure 9(b) shows the exploration gain according to the experiments. We can see that

the exploration speed gain is increased as the number of robots grows. It is not a perfect
coordination. An important factor to consider here is that the experiments were carried
out starting with the robots in a grouped configuration. This fact obviously reduces the
possibility to obtain a perfect coordination. Nonetheless, we can see that the different
scenarios perform in very different ways. Specially, the second scenario, which needs the
robots to travel a long path, has very poor gain with the addition of robots. However, the
other scenarios, that have more bifurcations, have a higher gain. This is because in these
scenarios the robots can exploit better the robot coordination mechanisms obtaining a
significant gain with the addition of robots.

4.3. SLAM Integration. The map quality can be evaluated by means of comparing the
position of each landmark in the visual map associated to the most probable particle with
their real positions in the simulated environment. This error in the map (Em

RMS) can be
expressed as the root mean square:

Em
RMS =

√

√

√

√

1

N

N
∑

l=1

(~xl
m − ~xl

r)
2, (12)

where N is the number of landmarks detected, ~xl
m is the 3D position of the landmark l in

the estimated map and ~xl
r is the real 3D position of the landmark l.

Using this metric, the resulting error of the experiments is shown in Figure 10(a). As
it can be seen, the error in the visual landmarks map obtained is small in relation with
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(a) (b)

Figure 10. Error in the map and dispersion on robot position.

the dimensions of the explored zone. It can be observed that the scenarios that require
to travel a long path through unknown zones present a higher error.

Figure 10(b) shows the average dispersion in the robots positions. It can be observed
how it is limited with the fixed localization thresholds (Tha, Thb). According to the design
of the algorithm, the SLAM is considered and integrated into the motion control by means
of the active localization state that forces the robot to return to previously explored zones
when the uncertainty in the position of the robots is high. This way, the robot maintains
a low localization uncertainty, and thus, a low error is committed in the visual map. This
is the purpose of the SLAM integration into the exploration algorithm.

As the robots are exploring the same space and sharing their acquired data to build
a common map, it could be thought that the error should decrease as the number of
robots grows. However, it can be seen in Figure 10(a) that the error does not have a
clear dependency with the number of robots. It is worth pointing out that increasing the
number of robots affects the algorithm in several ways:

• more observations are added to the system.
• the distance travelled by each robot is shorter.
• each particle is a worse representation of the state of the robots since it has to
represent the position of all the robots in the system.

The first two points should improve the quality of the map, however the third point should
reduce it. Furthermore, the error depends obviously on the number of particles that was
decided to be proportionally set with the number of robots. It can be better understood
how the number of particles and the number of robot positions that each particle has
to represent affects the system by means of analysing the number of effective particles.
The effective particles of the particle filter are defined as those particles that survive in
the resampling step of the filter. The number of effective particles should be as great
as possible to maintain a good representation of the suitable paths for the robots. In
Figure 11 we can see the average number of effective particles in the experiments. We
can see that, despite the linear increasing of the number of particles with the addition of
robots, the number of effective particles does not grow proportionally, and its standard
error increases.

Consequently, using small teams of robots, the error is quite stable and it does not
increase significantly. Thus, the use of a number of particles proportional to the number
of robots is an acceptable approximation with small teams. However, as the number of
robots grows, it can be seen a tendency on the number of effective particles to be reduced.
In these cases, the capability of the filter to represent suitable positions for all the robots
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Figure 11. Number of effective particles.

Table 4. Classification of exploration techniques

COORDINATION
no coordinated coordinated

SLAM INTEGRATION
classic [8, 15] [20, 10, 16, 11]

integrated [5, 9] [12] BBMRIE

is low. Therefore, although the exploration algorithm that controls the motion of the
robots can be used with a high number of robots, the SLAM algorithm cannot be scaled
appropriately in real-time without an exponential increment of the number of particles
with the number of robots that is computationally infeasible. Consequently, the use of
this SLAM technique is only recommended for small teams.

5. Comparison with other techniques and performance analysis. Table 4 shows
a relative comparison between the Behaviour Based Multi-Robot Integrated Exploration
technique (BBMRIE) exposed in this paper and other exploration techniques. In contrast
to these other techniques this one can be classified as an integrated and coordinated ex-
ploration algorithm. As it was previously explained, the classical exploration approaches
[8, 15] always direct the robots trying to maximize the information gain but they do
not take into account the quality of their localization. Since the accuracy in the SLAM
problem is affected by the trajectories of the robots, it is necessary that the robots inte-
grate somehow the uncertainty in their localization in its motion algorithm. Integrated
exploration algorithms [5, 9] deal with this problem. Furthermore, an exploration algo-
rithm should include coordination mechanisms to exploit the work in parallel of a team
of mobile robots [20, 10, 16, 11]. However, very few algorithms consider coordination
and SLAM integration at the same time [12]. In this paper, it has been presented a new
exploration algorithm (BBMRIE) that includes coordination and SLAM integration in a
very simple way. As it has been shown in Section 4, it was successfully tested showing a
good coordination and a good map quality according to the SLAM integration.
In order to analyse the performance of the algorithm, some statistics of the operation

of the FSA are very interesting. Figure 12(a) shows the average percentage of time that
the robots are running in each state considering all the scenarios and different team sizes.
As we can see, approximately 56% of the time they are working in the Exploration state
(A). A 7% of the time they are poorly localized and they work in the Active Localization
state (B). The rest 37% of the time is spent escaping from the local minima detected
(C). Figure 12(b) shows how these values change with the number of robots. We can
observe that they have a clear dependence with the number of robots. As the number of
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(a) (b)

Figure 12. FSA activation states

(a) (b)

Figure 13. FSA transitions: a) Local minima detected. b) Number of
times with poor localization.

robots grows, the dispersion decreases. This was shown in Figure 10(b). Consequently
the robots spent less time in Active Localization and more time in Exploration.

From Figure 13 we can get an idea of the transitions in the FSA. Figure 13(a) shows
the number of local minima detected and Figure 13(b) shows the number of times that
the high dispersion threshold Tha is exceeded. In all cases, the number of local minima
detected and poor localizations per robot decreases with the number of robots, however
the total number of local minima remains approximately constant and the total number
of poor localizations is slightly reduced. This can be explained by the lower number of
effective particles as the number of robots grows. As the result of these times when the
poor localization threshold is exceeded, a 7% of time in average is invested to return to
previously explored zones and improve the localization. However, it should be noticed
that this is only the time employed in going back, naturally, the robots might come to
invest a similar time in going to new frontiers again.

It could be observed from the experiments that the number of local minima detected
is considerable and affects significantly the performance of the algorithm. As it has been
shown, 37% of the time the robots are following planned paths to escape from local
minima. Despite this time is useful because it leads the robots to unexplored frontiers,
some time is wasted before when the robot is navigating towards a local minimum until
it detects it. This is a point to improve in future works.

6. CONCLUSIONS AND FUTURE WORKS. In this paper we have presented a
method for multi-robot cooperative integrated exploration. The method is based on the
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computation of a set of simple behaviours using potential fields. These behaviours are
designed to simultaneously consider both the necessity of rapidly exploring the whole
environment and the accuracy of the map building process. In this sense, the method
directs the robots to return to previously explored places when the uncertainty on the
location becomes significant. This fact improves the quality of the resulting map. The
SLAM is carried out with a Rao-Blackwellized particle filter. The known problem of local
minima in the potential field methods has been resolved with a strategy of detection and
escape. The detection is made analysing the potential field in the surroundings of the
robot. The escape from a detected local minimum is made following a planned path to
the nearest frontier.
The approach has been tested in simulation. The results show a good coordination

between the robots. The exploration time is reduced notably with the number of robots.
The statistics show that the robots employ a great part of the time exploring and little
time in active localization actions. The error of the maps obtained is relatively small
with a small team of robots. In contrast to classical exploration techniques, returning to
previously explored zones when the localization uncertainty is high improves the quality
of the maps. Despite the motion control algorithm has a good scalability, further work
should be done in the scalability of the SLAM for a team of a high number of robots.
As future works, we consider the extension of the approach to real and dynamic envi-

ronments. Besides, the experimentally design of the parameters can be difficult. In this
sense, the addition of techniques to learn automatically the multiple settings of the system
will be considered. We have also observed a loss of efficiency caused by the local minima
appearance. A hybrid model can be useful considering only a local area free of local
minima and using a high level planner. Furthermore, the SLAM technique applied has
been proved not to be appropriate for working in real-time with teams of a high number
of robots. In that sense, a decentralized SLAM where each robot builds his own map will
also be incorporated including techniques for map alignment and fusion. Semi-operated
models that integrate the commands expressed by a human operator in the exploration
task will also be studied.
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