
Feedback and Imprecise Information Processing in a
Voice Interface to a Robotic System
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Abstract—In this paper two methods are presented so that
it is possible to process the feedback of the errors produced
by a teleoperated robot, using a voice interface with natural
language processing capabilities. The solutions proposed in
this paper had its initial motivations on the following ques-
tions: (1) To find a method to process the feedback pro-
duced by the user during the execution of a teleoperated
command, expressed using a voice interface, and (2) how
can the system use the information provided by the feed-
back process so that the robot behaves in the way desired
by the operator in successive executions of the task.

Keywords— Artificial Intelligence, Fuzzy Logic, Human-
Computer Interaction/Interface, Learning Systems, Teleop-
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I. Introduction

IN this paper a module of feedback processing and error
correction in a real-time robotic teleoperated system is

presented. The global system consists of the following mod-
ules: speech recognition module, bilateral control module,
vision module, learning module, and the robot controller
and interface. The speech recognition module includes a
natural processing system that admits expressions of high
level commands in natural language, and provides a low
level program, directly executable by the robot.

The speech processing module provides the operator the
possibility to use his/her natural language to correct in real
time the errors that the robot can make during the execu-
tion of the requested command, including feedback infor-
mation toward the robot. This information received by the
robot can be used to adapt its behavior in some aspects,
in such a way that it improves the future execution of the
same command. Two very related approaches have been
used: a probabilistic approach (changing parameters of a
density probability function) and a possibilistic approach
(changing the parameters of a membership function of a
fuzzy set).

The objective of the work presented in this paper is to
obtain methods so that the teleoperated robot improves the
execution of tasks that has already learned how to carry out
in a satisfactory way, or whose execution steps are speci-
fied in the database, but with missing details (basically pa-
rameters) that can still be refined or to be adjusted using
feedback with natural language. Also, it is possible that
these parameters have acquired standard values during the
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learning process of the task using learning techniques [1],
[4], and they should be adapted to the necessities of each
operator or to the specific context in which the task is be-
ing developed. These improvements can be made during
the execution of the task by the robot, using qualitative
expressions (and possibly also quantitative) in natural lan-
guage.

Some authors have developed works partially related
with the topic described in this paper. In the work pre-
sented in [3], the authors developed a first adaptation tech-
nique applied to differentiate the different executions of the
same verb to different execution circumstances or to differ-
ent users, focusing on the specific application of control
devices for the disables. In the work described in [7] the
authors show a method for the pragmatic inference as a
necessary complement for command languages. The au-
thors develop a method to model and to recognize the in-
tention of the human operators that relates sequences of
domain actions (“plans”) with changes in some pattern of
the environment of the task. In the work described in [2] a
formal model was designed in order to represent computa-
tionally the intentions of the user in dialogue systems.

II. Experimental Environment

As in all teleoperated systems, the experimental system
considered here consists of a remote environment, as well
as a local environment that controls and supervises the
remote environment. The devices that interact with the
task, as well as the sensors that send to the operator the
information of what is going on in the remote environment
have been located in the remote area (figures 1 and 2). The
elements of the remote environment are the following: A
robotic arm (Mitsubishi PA-10) of 7 degrees of freedom,
which executes the commands emitted by the operator; a
computer that acts as the robot controller; a computer for
image processing that captures the images from the cam-
eras located in the remote environment and recognizes the
objects that are present in the scene; wide range area cam-
eras that are used for three-dimensional recognition of the
scene, as well as to provide to the operator visual informa-
tion about the remote environment; a camera located at
the end of the robotic arm, to obtain more precise visual
information in the manipulation of the objects on the part
of the robot; a force sensor that allows to know the force
exerted by the robot in the execution of the task, informa-
tion that is transmitted to the master manipulator so that
the operator has the information about the force and in
this way the teleoperation degree can be increased.
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Fig. 1. Configuration of the elements in the remote environment.

Fig. 2. Teleoperated system used for the experiments on natural
language.

In the local environment all the elements such that the
operator can interact to send and to receive the commands
to the remote environment can be found. These elements
are the following: graphic computation system, by means
of which the operator knows in real time the state of the
task and can control in a complete way the remote sys-
tem; master device; a computer for speech recognition that
performs the speech recognition together with the natural
language processing so that the operator can command the
teleoperated system using voice commands [6]. Also, this
computer implements the bilateral control of the system:
from the movements that the operator carries out in the
master device, the computer sends them to the remote en-
vironment so that the robot manipulator reproduces the
movements. Likewise, the computer transmits the received
information of the torques and forces exerted by the robot
to the master device in order to allow the operator to per-
ceive this information.

III. Error Feedback Using Natural Language

The feedback will be used to modify continuous output
signals (variables) generated by the robot as a part of the
response to a command in natural language. For example,
let us imagine that the robot is requested to place a piece
on a region of a table, and that the system has stored in
the learning database the steps to carry out this simple
task. It is possible that the space in which the robot could
place the piece in this command is very wide, and that a
range exists along the longitude of the region of the table

where the placement of the piece is considered “correct” or
“acceptable” for the user. The commands given in natural
language can be something as “put the screwdriver at the

other end of the table”, without specifying concrete coordi-
nates. However, the operator has usually a very clear idea
of a range at the other end of the table where it is accept-
able to place the piece, and another range where it is not.
After the execution of the command, a very natural way to
allow the feedback from the operator to the robot’s action
is to emit such correction commands as “a little more to the

left”, “more slowly”, “farther”, “much more to the right”,
etc.

The desired effect of these commands is the correction
of the current execution of the command in real time by
the robot and that as a consequence it also corrects the fu-
ture executions. In this way it is avoided that the operator
should specify details and parameters in a “non natural”
way, indicating the exact values, as in the following com-
mand: “put the screwdriver four cm away from the right

side of the shelf, parallel to the front edge and three cm out

of the same one” that are not natural for operators or users
non specialists in Robotics. Instead of this, the present
work is focused on a feedback process: the robot executes
the emitted command and the operator interacts with the
robot during the execution of the task. The extracted in-
formation from the interaction with the user is also stored
in the database of tasks, so that after the possible future
request of the same task by the same user, the system can
adjust the robot’s behavior using natural language.

In a similar way to the use of other classical devices to
guide a robot (master and joystick), two types of feedback
using expressions in natural language can be distinguished:

1. Position feedback, which corresponds with commands to
the robot in cases in which some position (final or partial)
of the robot has not been completely satisfactory. Typical
commands that fall in this category are: “more to the left”,
“much more to the left”, ”a little more to the right”, etc.

2. Accuracy feedback, which corresponds with commands
that refer to the value of some magnitude (forces, speed,
...) and they can be expressed using natural language com-
mands like “press with more care”, “not so slowly”, “much

more quickly”, etc.

From the observation of the practical execution of the
command by the robot, and using expressions in natural
language as the previous ones, the operator can express
the desired effect of the command, also retaining the same
effect in future executions of the same command. The ob-
jectives of the feedback subsystem using natural language
described in this paper are, therefore, two:

1. To correct in real time the robot’s current action.

2. To store the derived information obtained from the cor-
rection so that this information can be used in later execu-
tions.

In this section it will be assumed that the system has



already a set of tasks that the robot has learned how to
execute, or that in some way it has a list of sequential ac-
tions associated to each one of the tasks of this set. This
list of actions will be stored in the database of tasks of
the system, and the robot’s controller can access to it to
execute the actions. It is also assumed that most of these
tasks depends on a set of parameters, that is, their execu-
tion depends on an n-dimensional vector p of parameters.
These parameters can be positions at each step of the ex-
ecution of the task, speeds, forces, etc. The value of these
parameters is what will be adapted or learned through the
feedback types that will be described in this section.

A. Possibilistic Representation Techniques

Depending on the dimension n of the vector of parame-
ters p, it can be distinguished among one-dimensional tasks
(n = 1), two-dimensional (n = 2),..., n-dimensional tasks.
Since the specification of the “acceptable” values of the pa-
rameters won’t be made using concrete values, but emit-
ting feedback commands, the first proposed option uses the
ideas of fuzzy logic to represent the possible values of the
parameters [8]. Each parameter will belong to a fuzzy set
P that will represent the acceptable fuzzy values so that
the robot carries out the task.

A very simple example for a one-dimensional task will
be considered. Let us assume that the robot has learned
how to place a tool of the environment in its storage place.
This task will be executed after a command like “store
the screwdriver in the shelf” or “put the screwdriver in the

shelf”. The robot already knows the steps of this task to
carry out it in an autonomous way that will be basically
the following ones: (1) If the gripper is closed, open it; (2)
Move the end of the arm to the adequate grasping point;
(3) Close the gripper; (4) Move the end of the arm to the
selected point to store the tool; (5) Open the gripper; and
(6) Move away from the tool.

In the surface of the destination location of the tool a
range can exist where it is valid to place it, from the user’s
point of view. In this simple example, the parameter that is
sought to adjust using feedback is the appropriate interval
along the surface of the shelf where to store the tool. This
parameter is denoted as p, and will be one of the three co-
ordinates of the destination point in the three-dimensional
space. The rest of steps can have also parameters suscep-
tibles of being optimized. For example, the grasping point
of the piece is defined in a generic way, parametrized in or-
der to allow the adaptation to the specific execution. This
parameter will be used in the step (2).

The variable p, which is the objective of the feedback be-
longs to a fuzzy set P that represents qualitatively a certain
way of placing the tool. For example, to place it preferably
at the center of the destination, a fuzzy set can be used as
the one that is shown in figure 3, where in the X and Y
axis the value of the parameter p and the degree of mem-
bership to the set are represented, respectively. Similarly,
the fuzzy concept “preferably to the left or in the middle”
can be given by the fuzzy set whose membership function
is shown in figure 4.

Fig. 3. Fuzzy concept “preferably in the middle”.

Fig. 4. Fuzzy concept “preferably to the left or in the middle”.

Following these ideas, the parameters that are part of
the vector p are not considered to be numeric parameters
(real, integer,...), but rather they are fuzzy numbers, which
allows their adaptation or their generation in a flexible way.
The fuzzy numbers constitute a special subset of the fuzzy
sets that are defined on the set of the real numbers [5].

B. Stochastic Representation Techniques

Another considered possibility to represent the imprecise
information in the feedback to the robot using the speech
interface is the direct use of probability density functions.
For one-dimensional tasks, simple probability distributions
of one variable can be used, f(x), where x is the value of
the parameter, and f is the probability density function.
Using these ideas, a stochastic approach can be designed
as an alternative representation of the parameters that are
desired to adjust. The robot will use as working parameter
values of p that belong to an interval around the mean
of the distribution, with a dispersion that is given by the
variance.

The choice of the function f depends on the robot, the
environment and the specific task. In the work described in
this paper a well-known function has been used, specially in
learning experiments [3], the beta function or distribution
whose probability density is given by:

f(x) =
g(α+ β)

g(α)g(β)
xα−1(1−x)β−1, α > 0, β > 0, 0 < x < 1

(1)



where g is the gamma distribution, which is defined as:

g(x) =

∫ ∞

0

e−ttx−1dt (2)

The computation of g for integer numbers is simple, since
it interpolates the factorial function (n!), in such a way
that g(n + 1) = n!. The mean and the variance of the
distribution f can be easily obtained from the following
expressions:

f̄ =
α

α+ β
(3)

σ2
f =

αβ

(α+ β)2(α+ β + 1)
(4)

The beta distribution is frequently an appropriate model
to describe the random behavior of the percentages. This
takes advantage in the work presented in this paper to
represent probabilistically behaviors that depend on one
or several parameters. Depending on the values of α
and β , the function will represent different behaviors.
If α = β = 1, then all the values in the interval (0, 1)
are equally probable, representing the idea that the user
doesn’t care too much the value of the parameter while it
belongs to a specific interval. In the simple example de-
scribed in the previous section, this is translated to the
fact that it is not relevant the exact point in which the tool
is placed in the shelf, in the range of its longitude (that is,
in the range of the function f). For the values α = β = 1
an uniform distribution in the interval (0, 1) is obtained,
that is usually the initial distribution for the task.

In the extreme case that both parameters α and β are
equal to zero, a so called rectangular distribution is ob-
tained, since the probability density function is reduced to
the constant function f = 1, and its form is similar to a
rectangle whose ends are excluded. Another singular case
occurs when one of the parameters is zero and the other
one is the unit. The curve of the distribution corresponds
then with two straight lines of opposed slopes.

C. Behavior Adaptation

Before feedback takes place on the robot’s behavior, the
operator should emit a command. When the robot have
to decide the value of the parameter vector p associated
with this command, from the membership function of a
fuzzy set or from the probability density function, a sam-
pling algorithm is used, based on these functions. There
exist several algorithms to carry out this sampling. In the
work presented in this paper several sampling techniques
have been used, being the most elaborated the one that is
described next. First, an interval [xmin, xmax] for the gen-
eration of the values and a superior limit M of f in this
interval are defined. The algorithm consists of generating
pairs of random numbers and presenting the first one as
the result only if the second satisfies a condition. If the
condition is not satisfied, a new pair is randomly chosen.
The steps of the algorithm are the following:

1. Generate a pair of random numbers (a, b).

2. x = xmin + (xmax − xmin)a.
3. If Mb ≤ f(x), then the output is x, end.
4. Go to step 1.

Once the robot has chosen the value of the parameter
from the current function that represents the knowledge,
the user can emit correcting commands associated to that
parameter. As reply to the correcting command, the robot
executes an immediate action and it adapts the internal
representation of the parameter depending on the correc-
tive command. Therefore, depending on the nature of the
feedback command emitted by the operator, the adapta-
tion of the function will be different.

C.1 Position feedback

The position feedback in natural language should have
an immediate effect on the robot’s position, besides mod-
ifying the membership function associated to the position
parameters for that task. For example, after a feedback
like “... a little more to the left ... ”, the robot will move
a longitude toward the left and it will also adjust the coor-
dinates for the next time it executes the task.

The magnitude of the displacement as a consequence of
the position feedback depends on the specific feedback com-
mand that the operator has emitted. A simple way of mod-
elling these displacements is to define n different constants
c1, c2, ..., cn for each position feedback category, such that:

c1 < c2 < · · · < cn (5)

The commands that generate relatively very small move-
ments will come defined with the constant c1, those that
generate relatively small movements with the constant c2,
those that generate mean movements with the constant c3,
those that generate big movements with the constant c4,
those that generate very big movements with the constant
c5, and so on. The decision about the value that should
have the variable n and the concrete values that should
have the n constants ci depends on the nature of the pa-
rameter and on the specific task and they are determined
by means of a specific design or in the learning phase of
the tasks.

In the case of the stochastic learning, the specific value
of the robot’s displacement is multiplied by the dispersion
of the density distribution function. The dispersion can be
computed using the standard deviation σf . In this way,
when the robot is given an order of position feedback, the
constant ci corresponding to the corrective command will
be obtained and it is multiplied by the standard deviation,
σf , of the distribution function f associated to the param-
eter. For example, if the following feedback command is
emitted “... much more to the right ... ”, and the constant
associated to this command is ci, then the displacement
will be given by the product ciσf .

In the case of the possibilistic technique used in the ex-
periments, the constant is multiplied by the dispersion of
the membership function. Triangular, trapezoidal and a
special type of membership function associated to the de-



nominated fuzzy numbers have been used in the experi-
ments. These special type of membership functions are cen-
tered around a number, with arbitrary functions to both
sides of the center, and they are called Left-Right fuzzy

numbers (L-R), whose membership functions are defined
as:

fn(x) = f(x; a, αL, αR)LR =







L
(

a−x
αL

)

if x ≤ a

R
(

x−a
αR

)

if x > a

(6)
where a is the center of the fuzzy set, αL and αR are pos-
itive real numbers which represent the dispersion of the
function, and R and L are two functions that satisfy the
following conditions:

• R(0) = L(0) = 1;
• R and L are non-increasing in the interval [0,∞[.

To decide the change in the robot’s position as a conse-
quence of the feedback with voice, as it has been indicated
before, the constant ci is multiplied by the dispersion cor-
responding to the membership function, given directly by
the constants αL and αR in the case of L-R fuzzy numbers.
If triangular or trapezoidal membership functions are used,
the dispersion is given by the distance between the center
and the extremes of the triangle or trapeze.

Besides causing a change in the robot’s position, this
feedback type should cause a change in the generation of
the parameter for future executions of the same command.

In the case of the stochastic learning, the method used to
change the robot’s future answer is to modify the mean of
the distribution of the defined probability to make it equal
to the current value of the parameter (the value obtained
after the feedback). Also, after each corrective action, the
system modifies the distribution in such a way that de-
creases the variance. This is made assuming that after sev-
eral executions and corrections on the part of the operator
of the specific parameter, the deviation of the distribution
should tend to decrease, since the more corrections carried
out, the bigger “reinforce” of the learning of the parameter.
A way of getting this is making the new variance equal to
the square root of the previous variance:

σf (i+ 1) =
√

σf (i) (7)

In the case of the adaptation in the possibilistic ap-
proach, the functions are modified in a similar way. The
center as well as the dispersion of the membership function
of the fuzzy number are adequately modified. Therefore,
in the representation of L-R fuzzy numbers, the dispersion
will be given by the parameters αL and αR. The variation
of these parameters after a position feedback command is
computed in a similar way to the case of the standard de-
viation:

αR(i+ 1) =
√

αR(i) (8)

αL(i+ 1) =
√

αL(i) (9)

In this way it is possible to decrease the dispersion in the
random selection of the parameter whose value has been
corrected.

C.2 Accuracy Feedback

As it has already been mentioned, an accuracy feedback
is the emition of interaction commands that refer to the
value of some magnitude (forces, speed,...). It is expressed
with commands in natural language as “press with more

care”, “... not so slowly...”, etc. This feedback doesn’t
cause an immediate change in the position and the robot’s
current state, but rather it causes a change in the func-
tion that is used to generate the magnitude to which refers
the command. As in the previous case, the change can be
reflected changing the variance of the distribution, or the
dispersion of the membership function of the fuzzy num-
ber directly. If the command refers to the necessity of in-
creasing the value of a magnitude, then the variance or the
dispersion should be increased (for expressions like “more

quickly”).
On the other hand, if the command refers to the neces-

sity of decreasing the value of a magnitude, then the system
should decrease the variance or the dispersion explicitly
(for example, for expressions like “... with less force...”).
The change that is made to the variance or the dispersion
should be proportional to the current values of variance and
dispersion, so that the change takes place in a controlled
way. A form of getting this is to increase or to decrease
the dispersion according to the absolute value of the first
derivative of the dispersion with respect to one of the pa-
rameters of the distribution (for example, with respect to
α , in the case of the beta distribution, or with respect to
the center, in the case of the possibilistic techniques), so
that an increase or decrease following the direction of the
gradient takes place:

σf (i+ 1) = k
∂σf
∂α

, k > 0 (10)

If approval expressions are allowed in the language after
the execution of a task (expressions as “it’s OK”, ”well”,
“that’s right”, etc.), which can be understood as positive
feedback commands, then the mean of the distribution can
be changed in such a way that it is equal to the value of the
parameter given by the robot, also diminishing the variance
(for example, to their square root). In the system imple-
mented in this paper, this modification of the parameters
was not considered, because it would overload the real-time
system excessively. If the user doesn’t make any correction
on the parameter after the execution of the command, the
internal representation of this parameter is not changed.

IV. Validation of the Methods and Conclusions

The group of techniques described in section 3 has been
experimented in an environment of a teleoperated robot
like the one described in section 2. In Table I a sequence of
values of the parameter p is shown. This parameter rep-
resents the distance to the origin of coordinates considered
in the environment for a command of placement of a piece
with position feedback, using possibilistic techniques with
L-R fuzzy numbers.

In Table II the same previous experiment is shown, using
the beta probability distribution.



TABLE I

Position feedback with possibilistic techniques, using L-R

fuzzy numbers.

p position feedback

0.500 more to the right

0.725 much more to the right

0.911 a little more to the left

0.886 much more

0.780 OK

TABLE II

Position feedback with stochastic techniques, using the beta

distribution.

p position feedback

0.500 much more to the left

0.300 a little more to the right

0.401 a little more to the left

0.381 a little more

0.751 OK

In figure 5 a sequence of functions of probability distri-
bution is shown after the processing of position feedback
commands, indicating successive displacements toward the
right. It can be observed that, besides moving the mean of
the distribution, the process also diminishes the standard
deviation in order to reinforce the fact that feedback has
taken place on the associate parameter, reducing in con-
sequence the effective range in the practice in which the
robot obtains values using the sampling algorithm.

The initial values for the parameters for the beta distri-
bution are always α = β = 10 (except for the cases in which
a mean different from 0.5 is explicitly indicated). Later on,
as a consequence of each feedback command, new integer
values are computed for alpha and β such that the mean
of the distribution approaches to the new value obtained
after the feedback, and such that the standard deviation
diminishes approximately according to the constant 1/k,
where k = 2 in the reported experiments (figure 5). Note
that since the values of α and β are integer numbers, the
real-time method can only obtain an approximate solution
to the equation

σf (i+ 1) =
1

k
σf (i) (11)

which has to be solved to obtain the new standard devia-
tion, and to the equation

f̄ = x (12)

to obtain the new mean in each feedback iteration.
The main conclusion of the work described in this paper

is that both representation methods allow the implementa-
tion of a feedback system that is very natural to an human
operator, specially indicated when programming a robot

Fig. 5. Successive displacements towards the right of the mean of the
distribution and decrease of the standard deviation as a consequence
of the corresponding feedback commands.

to perform high-level tasks. The feedback and correction
system is adequate for the application to a real-time tele-
operated system, which allows the operator to “train” the
robot in order to adapt in a very natural way the “intu-
itively” desired values for some parameters that define the
robot behavior.

The two described techniques allow the processing of the
feedback following the objectives that have been described
in the introduction. However, the possibilistic technique
presents the advantage of being more intuitive in the def-
inition and interpretation of the obtained representations
of the parameters, besides being the most appropriate for
a real-time robotic system, since the computational com-
plexity required is smaller.

The probabilistic technique presents the advantage of al-
lowing a more precise feedback of the parameters. Only in
the cases in which the specific robotic task carried out by
the operator requires high numerical precision, the use of
the stochastic technique is justified, keeping in mind the
required computational cost.
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Universidad Politécnica de Madrid, Madrid, 1994.
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