Research Projects DONUT Title: European Doctoral Network for Neural Prostheses and Brain Research Funded by: European Commission Duration: 1/1/2024 hasta 31/12/2027 Head Researcher: Investigador responsable UMH: José María Azorín Poveda Coordinador: Ivan Volosyak (Rhine-Waal University of Applied Sciences) Mobile robotics for the automatic surveillance of premises and identification of dangerous situations in challenging conditions using deep learning techniques Title: Mobile robotics for surveillance using deep learning techniques Funded by: Agencia Estatal de Investigación - Ministerio de Ciencia, Innovación y Universidades Duration: Desde 01/09/2024 hasta 31/12/2027 Description: The project proposes the use of mobile robots for the automatic surveillance of premises, including indoor and outdoor areas and for the identification of risk situations in challenging operation conditions, with the common philosophy of using AI tools for the robust approach to these issues. Currently, these tasks are carried out by specialized personnel, with the help of cameras located in fixed positions. We propose to achieve much more effective surveillance through mobile robots that can patrol the areas to be monitored and use different types of sensors (visible spectrum cameras, infrared cameras, laser range sensors, etc.) to detect both risk elements and situations. It is expected that the results of this project can be relevant both for security companies and for the State security forces and bodies. Keywords: Mobile robot, visual perception, point cloud, deep learning, sensor fusion, localization, mapping, environment interpretation Head Researcher: A. Gil, L. Payá IA-GAMMAPATIA Title: Análisis inicial de herramientas de IA para la predicción de la malignización de las gammapatías de significado incierto a mieloma múltiple u otras patologías linfoproliferativas Funded by: Generalitat Valenciana Duration: 01/2023 - 12/2023 Description: Existe el riesgo de progresión de pacientes con gammapatía monoclonal de significado incierto a Mieloma Múltiple. Aunque se conocen clasificaciones basadas en el riesgo de evolución a cáncer, hay que realizar controles médicos de por vida para detectar la evolución hacia la malignización de las gammapatías. Se explorarán los datos existentes y se realizará un análisis inicial del funcionamiento de diversas herramientas de IA, para establecer la capacidad de predicción de cada una de ellas. Head Researcher: L. Payá AViRobots Title: Development of an intelligent surveillance and security infrastructure system based on mobile robots Funded by: AVI (Agència Valenciana de la Innovació) Duration: 01/2023 - 12/2025 Description: The project focuses on the use of terrestrial mobile robots for the surveillance of indoor and outdoor environments, access control and people identification. It is proposed the realization of technological developments that digitize and automate the tasks of surveillance of buildings and infrastructures by means of mobile robots aided by artificial intelligence techniques. The project considers the development of a complete surveillance system that will integrate: a set of intelligent mobile robots equipped with sensors, a human-machine interface software system that will allow efficient interaction between operators and robots and, finally, a wireless communications system that will allow the exchange of information in the system. Keywords: Mobile robots, visual perception, multisensory fusion, infrastructure surveillance Head Researcher: Arturo Gil, Luis Payá NANOTERASUCO Title: Nanoformulaciones de sulfuro de cobre como agentes terapéuticos para tumores de mal pronóstico Funded by: Unisalut Duration: 2023 Description: Esta acción preparatoria se centrará en demostrar la capacidad de nanoformulaciones de sulfuro de cobre (CuS) de producir hipertermia e inducir muerte celular selectiva en modelos celulares de tres tipos de tumores de mal pronóstico (glioblastoma, carcinoma de páncreas exocrino y de colon). Evaluar su potencial como monoterapia o terapia combinada en este tipo de tumores y explorar las ventajas que supone la activación de estas nanoformulaciones por irradiación en el infrarrojo cercano. Head Researcher: J.C. Ferrer CONCEPTO Title: Sistema de neurorehabilitación de bajo coste basado en dispositivo robótico de miembro inferior e interfaz cerebro-máquina Funded by: Proyectos competitivos de subvención pública Duration: Fecha inicio: 24/03/2023 Fecha fin: 31/12/2023 Head Researcher: Ortiz Garcia, M. DIFUSIÓN Title: Ayuda UMH para proyectos de difusión de la ciencia, la tecnología y la innovación 2023 Funded by: UMH Duration: Fecha inicio: 01/01/2023 Fecha fin: 31/12/2023 Head Researcher: Iañez, E. DIFUNDE Title: AYUDAS AL ESTÍMULO DE LA TRANSFERENCIA E INTERCAMBIO DE CONOCIMIENTO 2023 Funded by: Proyectos competitivos de subvención pública Duration: Fecha inicio: 24/03/2023 Fecha fin: 31/12/2023 Head Researcher: Iañez, E. ICAR Title: Plataforma de neurorrehabilitación de bajo coste basada en exoesqueleto de tobillo e interfaz cerebro-máquina Funded by: Proyectos competitivos de subvención pública Subtipo: Proyecto nacional Duration: Fecha inicio: 01/01/2023, Fecha fin: 31/12/2023 Head Researcher: Ortiz García, M. Azorín, J.M. Modelado predictivo y caracterización física de dispositivos optoelectrónicos e híbridos mediante técnicas de inteligencia artificial soportadas por aprendizaje automático y profundo Title: Modelado predictivo y caracterización física de dispositivos optoelectrónicos e híbridos mediante técnicas de inteligencia artificial soportadas por aprendizaje automático y profundo Funded by: Generalitat Valenciana. Programa I+D+i 2022. Conselleria de Innovación, Universidades, Ciencia y Sociedad Digital. Duration: 01/01/2022 - 31/12/2023 Description: Este proyecto plantea la optimización y mejora de las propiedades de dispositivos optoelectrónicos como fotodectectores orgánicos e híbridos mediante modelado predictivo sustentado por técnicas computacionales de Inteligencia Artificial tales como regresión e inferencia gaussiana, aprendizaje automático y profundo, aprendizaje por refuerzo y aprendizaje por transferencia. El procedimiento de fabricación de estos dispositivos entraña una serie de costes y riesgos, los cuales se pretenden minimizar a partir de la obtención de una caracterización predicha mediante modelos predictivos computacionales, sustentados principalmente por redes neuronales convolucionales. Así pues, se espera mejorar los resultados reales en términos de sus propiedades eléctricas, como son sus magnitudes de tensión, corriente y eficiencia de conversión. Pero también en términos de comportamiento temporal, ciclos de vida medio, durabilidad, así como en aspectos relacionados con el ecodiseño: residuos de fabricación, huella de CO2, huella hídrica, etc. Head Researcher: David Valiente HORAS Title: Optimal classification of pieces in production proceses Funded by: Ministerio de Ciencia e Innovación Duration: 3 años Description: HORAS project is composed of two parts. First one, aims to design and program a robotic station, formed by a set of "n" robots, performing a pick-and-place process of flat pieces for the apparel industry and its subsequent classification, either by type or by pieces needed to create a product. The second part is software development based on the programming of a system using Python to obtain data from CAD files from industrial machinery and send it directly to the set of robots transferring CAD information directly to the system to perform the gripping and sorting operations. First, we will conduct a study of the current state of the art in the use of general purpose, parallel and collaborative industrial robots to determine which ones are best suited to the task to perform. Once the process features and robots have been analyzed, the virtual station will be designed using selected manufacturer's software. This station will perform the process of cutting sheets of a material using a CNC machine and then, thanks to a conveyor belt, these pieces will be transported to the pick- and-place station, where the robots, suspended on a gantry on the belt, will be in charge of performing the pick-and-place task and its subsequent classification and placement of the pieces. Finally, we will focus on the simulation of the station, with the analysis and evaluation of obtained results to check its correct operation. To carry out this process, we will design and build the necessary tooling to equip the robot system with the capacity to grip flat pieces for optimized sorting. This tooling will take into account that some of the materials used in the fashion industry are very porous, so it will be equipped with a matrix of vacuum suction cups and an additional matrix of needles for gripping porous and delicate materials. Each of the matrix elements will be selectively activated to grip only the target piece and not the adjacent ones. To this end, a computer vision algorithm will be created with the ability to position the robot tooling so that there are the maximum number of tool gripping points for each of the pieces being handled. The gripping of the pieces by the robot cannot be done by vision recognition since the pieces are cut in the raw material from which they come out. This cut is so thin that it is imperceptible to the machine vision system and it is necessary to use the information coming from the CAD file of the machine to be able to know the position and orientation of each of the pieces. Therefore, in the second part of the project, we will develop a Python program to read the files obtained from a CNC machine with the design of the cut made, provided by the company Comelz and with which we will obtain the position data, rotation, and the name of each of the template models present in the file. These data will be sent through a socket to the robot in its native language. With this data, the robot will be able to perform the pick-and-place task, in a more automated way, and its subsequent classification. The goal of the system is to perform the manipulation of hundreds of pieces in the shortest time possible. For this purpose, a set of robots will be used working coordinated so as not to collide with each other and to grab each piece to perform the task in the minimum possible time, including especially the order of the operations to be performed. Keywords: Computer vision, robotics, optimization Head Researcher: Carlos Pérez Vidal TED2021 Title: Development of intelligent mobile technologies to address security tasks and surveillance indoors and outdoors Funded by: Agencia Estatal de Investigación. Ministerio de Ciencia e Innovación Duration: 12/2022 - 11/2024 Description: This project proposes using mobile robots and machine learning technologies to carry out surveillance and security tasks in indoor and outdoor environments. During the course of the project, it is expected to generate scientific knowledge and carry out technological developments that digitize and automate the tasks of surveillance of buildings, infrastructures and industry. Such developments are expected to have potential of technology transfer to security companies, State security forces and emergency units. Keywords: Mobile robot, computer vision, image processing, sensor fusion, robot navigation, deep learning Head Researcher: A. Gil, L. Payá BRAINSYS – Desarrollo de interfaces cerebro-máquina para rehabilitación de personas con limitaciones motoras Title: BRAINSYS – Desarrollo de interfaces cerebro-máquina para rehabilitación de personas con limitaciones motoras Funded by: Ministerio de Ciencia e Innovación Duration: desde 1/12/2022 hasta 30/11/2024 Keywords: interfaces Head Researcher: José María Azorín Poveda ReGAIT- Desarrollo de una interfaz neural-máquina auto-calibrada para control en bucle cerrado de exoesqueletos de miembro inferior Title: ReGAIT- Desarrollo de una interfaz neural-máquina auto-calibrada para control en bucle cerrado de exoesqueletos de miembro inferior Funded by: Ministerio de Ciencia e Innovación Duration: desde 1/09/2022 hasta 31/08/2025 Keywords: exoesqueletos Head Researcher: José María Azorín Poveda (IP1), Eduardo Iáñez Martínez (IP2) Prototipo de bajo coste para el entrenamiento cognitivo Title: Prototipo de bajo coste para el entrenamiento cognitivo Funded by: Vicerrectorado de Transferencia e Intercambio del Conocimiento, Universidad Miguel Hernández de Elche Duration: desde 1/01/2022 hasta 31/12/2023 Keywords: bajo coste, cognitivo, EEG Head Researcher: Eduardo Iáñez Análisis de la actividad cerebral para tareas de asistencia y rehabilitación con exoesqueletos Title: Análisis de la actividad cerebral para tareas de asistencia y rehabilitación con exoesqueletos Funded by: Vicerrectorado de Investigación, Universidad Miguel Hernández de Elche Duration: desde 1/01/2022 hasta 31/12/2023 Keywords: actividad cerebral, rehabilitación, asistencia, exoesqueletos Head Researcher: Eduardo Iáñez SubActuatedRobots Title: Securing manipulator robots with free-swinging joint failures by extinguishing their uncontrolled self-movements Funded by: CONSELLERIA DE INNOVACIÓN, UNIVERSIDADES, CIENCIA Y SOCIEDAD DIGITAL Duration: 1/1/22-31/12/23 Description: Keywords: Parallel robot, underactuated, redundant, self-moving varieties, free swing failure, torque failure Head Researcher: Adrián Peidró TorqFailRob Title: Control of parallel robots that have suffered torque failure Funded by: Universidad Miguel Hernández, Vdo. de Investigación Duration: 1/1/22-31/12/22 Description: Keywords: variety of self-motion, parallel, underactuated robot Head Researcher: Adrián Peidró HyReBot Title: Hybrid Robots and Multisensory Reconstruction for Applications in Lattice Structures (HyReBot) Funded by: Ministerio de Ciencia e Innovación Duration: 09/2021 - 08/2024 Description: The use of reticular structures, which are composed of a number of beams or bars closely intertwined, is widespread nowadays in the construction of all types of fastening and support components for different infrastructures. They are especially indicated in metal bridges but also in roofs of hangars and spacious industrial buildings. They are generally formed by a set of highly interlinked and interconnected bars, joined together by nodes (either rigid or articulated), forming a three-dimensional structural mesh. The execution of both inspection and maintenance tasks on this type of reticular structures is especially challenging owing to (a) the access problems because of the high interconnection of the bars through the nodes and (b) the complexity of going through paths that permit moving from one starting point to a target point while traversing these structural nodes. Keywords: Hybrid robots, visual perception, sensor fusion, reticular structures Head Researcher: L. Payá, O. Reinoso PROMETEO2021 Title: Towards Further Integration of Intelligent Robots in Society: Navigate, Recognize and Manipulate Funded by: GENERALITAT VALENCIANA Duration: 01/2021 - 12/2024 Description:
In recent years, the number of robots used to perform tasks autonomously in multiple fields and sectors has gradually increased. Today, we can find robots performing repetitive tasks in controlled environments, addressing complex and sometimes dangerous tasks. However, having robots perform tasks in uncontrolled environments with the presence of objects and moving elements (such as people and other robots) and requiring the need to move between different points in the scene presents notable challenges that need to be addressed to enable greater integration of robots in such scenarios.
This research project aims to tackle activities within this scope in three specific lines: navigation, recognition, and manipulation, in order to advance the integration of robots and the performance of tasks in these environments. On one hand, it is necessary to consider the presence of humans in these social environments, as their possible movements and behavior will affect how robots should move and, ultimately, navigate within these scenarios. Additionally, there is a need to advance in the tasks of environment recognition, identifying the scenarios to make the localization of robots within them more robust and precise. Finally, the problem of object manipulation by these robots will be addressed, considering both the flexibility in shape and the deformability of these objects.
Project PROMETEO 075/2021 is funded by the Consellería de Innovación, Universidades, Ciencia y Sociedad Digital de la Generalitat Valenciana Head Researcher: Oscar Reinoso RETIC Title: Planning of robotic movements in metallic structures Funded by: Universidad Miguel Hernández de Elche Duration: 01/01/2021 - 31/12/2022 Description:
Nowadays, we encounter three-dimensional metallic lattice structures in numerous artificial constructions, such as stadiums, high-voltage or telecommunications towers, airports, construction sites, pipeline networks in refineries, nuclear power plants, and aerospace constructions. These structures, composed of interconnected bars forming genuine metallic networks, require periodic inspection and maintenance to preserve their good condition and functionality and to prevent their structural stability from being compromised by deterioration. Examples of the required tasks include coating the metallic bars of the structure with protective paints to prevent corrosion, non-destructive inspection to detect possible cracks and welding defects, and tightening threaded joints, among others.
Traditionally, these tasks have been performed by human operators who, equipped with safety mechanisms such as harnesses, have to climb the structure and carry out the aforementioned operations. Despite the possible safety measures that can be adopted, performing these operations is dangerous for humans, who are subjected to significant safety and health risks. In order to avoid these dangers to human operators, the possibility of performing these hazardous tasks at height using robots (autonomous or teleoperated) has been pursued over the past three decades. In this project, the objective is to plan movements that a hybrid robot can perform so that it can navigate through these structures and pass through the structural nodes, attaching itself appropriately to carry out inspection and maintenance tasks. Head Researcher: Oscar Reinoso Garcia DECODED Title: Decoding brain activity related to gait during exoskeleton-assisted walking Funded by: European Union’s Horizon 2020 research and innovation programme, via an Open Call issued and executed under Project EUROBENCH Duration: 01/04/2021 hasta 31/05/2022 Description: Lower-limb robotic exoskeletons have emerged as aids for over-ground, bipedal ambulation for individuals with motor limitations. The usability and clinical relevance of these robotics systems could be further enhanced by brain-machine interfaces (BMIs). Different approaches have been explored in the last decade to use BMIs based on EEG to interact with robotics exoskeletons. One of these approaches is based on detecting users’ motor imagery related to walk. In this regard, our group have developed different BMIs exploring the capabilities of using motor imagery for commanding exoskeletons. In addition, as the performance of current BMIs has to improve in order to command exoskeletons not only in clinic environments, but also at home or outdoors, our group is currently implementing a new BMI based on the combination of two paradigms: motor imagery and user’s attention during walking. Indeed, we have just published a paper showing some promising results using this new BMI. However, in this BMI, motor imagery is decoded only while users are walking through typical flat grounds and users’ attention is estimated from EEG. Head Researcher: José María Azorín Poveda REKINE Title: Reconstructing kinematics trajectories during walking from EEG signals Funded by: European Union’s Horizon 2020 research and innovation programme, via an Open Call issued and executed under Project EUROBENCH Duration: 01/04/2021 hasta 31/05/2022 Description: Lower-limb robotic exoskeletons have emerged as aids for over-ground, bipedal ambulation for individuals with motor limitations. The usability and clinical relevance of these robotics systems could be further enhanced by brain-machine interfaces (BMIs). Different approaches have been explored in the last decade to interact with robotics exoskeletons by means of BMIs based on EEG. One of the approaches explored is based on the decoding of kinematics trajectories during walking from EEG. Although walking is automatically based on reflexes governed at the spinal level, there are evidences that suggest that the motor cortex is particularly active during specific phases of the gait cycle. In addition, recent studies claim that EEG signals are directly related to the value of joint angles involved in human gait. Head Researcher: José María Azorín Poveda GVA_COVID19_2021_062 Title: Estudio exploratorio de los efectos del uso de neuroestimulación no invasiva en pacientes con anosmia persistente post COVID. Funded by: Consellería de Innovación, Universidades, Ciencia y Sociedad Digital (Generalitat Valenciana) Duration: 1/1/2022 hasta 31/12/2022 Description: Estudio exploratorio de los efectos del uso de neuroestimulación no invasiva en pacientes con anosmia persistente post COVID. Head Researcher: José María Azorín Poveda OBRAINSITY Title: OBRAINSITY - Nuevos enfoques terapéuticos frente a enfermedades metabólicas: modulación de la ingesta de alimentos y del balance energético mediante nutracéuticos y neurotecnología Funded by: Conselleria de Innovación, Universidades, Ciencia y Sociedad Digital (Generalitat Valenciana) - Programa Prometeo para grupos de investigación de excelencia – PROMETEO 2021 Duration: 1/1/2021 hasta 31/12/2024 Description: OBRAINSITY - Nuevos enfoques terapéuticos frente a enfermedades metabólicas: modulación de la ingesta de alimentos y del balance energético mediante nutracéuticos y neurotecnología Head Researcher: Vicente Micol Molina y María Herranz López ModRet Title: Recognition and modeling of lattice structures (ModRet) Funded by: Universidad Miguel Hernández de Elche Duration: 2 años Description:
The project focuses on the creation of models of lattice structures. These types of structures are found in numerous constructions and require continuous maintenance. This maintenance can be automated using a mobile robot capable of moving through the structure. However, to undertake this task, the robot must have a model of the structure that allows it to know its position and plan the appropriate trajectory and sequence of movements to reach the target point. To create this model, the robot will collect information as it moves along the structure for the first time, using its equipped sensors (primarily omnidirectional vision systems).
Modeling these types of structures presents several differential aspects compared to other environments, such as their symmetry and the presence of repetitive visual structures, the wide variety of viewpoints from which they can be observed depending on the robot's trajectory, and the changes their appearance may undergo due to repairs carried out by the robot. Considering these characteristics, the model will be given a hierarchical structure, with a high-level layer containing information about the topology of the structure, and one or more low-level layers with data about the bars and nodes, such as their shape, width, planes that compose the bars, and node topology. Artificial intelligence and deep learning techniques will be used for scene description and extraction of relevant information. These tools will separate the information surrounding the structure and its conditions (such as lighting conditions) from the information of the lattice surrounding the robot (bars and nodes). Additionally, algorithms will be implemented for incremental model creation, updating it as the robot advances and captures new information about the structure. Head Researcher: L. Payá ParallelRobots Title: Design and study of computational torque regulators for traversing singularities in parallel robots Funded by: CONSELLERIA DE INNOVACIÓN, UNIVERSIDADES, CIENCIA Y SOCIEDAD DIGITAL, Generalitat Valenciana Duration: 01/01/2021-31/12/2021 Description:
Parallel robots control the movement of their end-effector or gripper through multiple kinematic chains connected in parallel, forming closed kinematic chains. This provides them with greater structural rigidity and dynamic performance, but it also limits their workspace and divides it into different regions separated by parallel-type singularities (also known as type 2 singularities) that do not exist in serial or open kinematic chain robots. When the robot crosses one of these singularities, it is not possible to control the movement of its end-effector in any arbitrary direction, requiring infinitely large actuation torques in the actuators. This makes it difficult to cross such singularities to fully utilize the robot's workspace.
In previous works, other researchers have avoided the divergence of actuation torques by designing the end-effector's trajectory so that, when crossing the singularity, the robot's dynamic model does not degenerate, satisfying a non-degeneration condition derived by other researchers in the past. The drawback is that the trajectory used to cross the singularity cannot be arbitrary; it must be designed to meet the mentioned non-degeneration condition.
In this project, we propose the design of new Computed-Torque Control laws that allow crossing the mentioned parallel singularities while avoiding the divergence of the actuation torques, so that they remain finite during the crossing of the singularity, and additionally avoiding the need to design the trajectory to achieve this, thus allowing arbitrary trajectories. To achieve this in the present project, we propose considering the small modeling errors that always occur when modeling the dynamics of the robot to be controlled. These small errors cause the tracking of the desired trajectory to be imperfect, which provides some margin to meet the non-degeneration condition simply by adjusting the proportional and derivative gains of the regulator, leaving the trajectory completely free. The proposed control will be tested in this project through simulation with example parallel robots, and also through testing on real parallel robots.
Project funded by the Department of Innovation, Universities, Science, and Digital Society of the Generalitat Valenciana. Keywords: parallel robot, singularity, computational torque control Head Researcher: Adrián Peidró EMERG2020 Title: Scene Reconstruction from Omnidirectional Cameras Using Visual Appearance Techniques and Deep Learning Funded by: Generalitat Valenciana Duration: 01/2020 - 12/2020 Description: Keywords: Deep learning, scene reconstruction, localization, omnidirectional vision Head Researcher: M. Ballesta NEUROTECH Title: NEUROTECH - The European University of Brain and Technology Funded by: EUROPEAN COMMISSION. Call: EAC-A02-2019-1. Programme: EPLUS2020. Duration: 1-11-2020 - 31-10-2023 Description: NEUROTECH - The European University of Brain and Technology Head Researcher: Juana Gallar DETECTA Title: Detección de eventos motores mediante IMUs para etiquetado de señales EEG (DETECTA) Funded by: Convocatoria de Ayudas a la Investigación 2020 de la Universidad Miguel Hernández, AYUDAS PARA PROYECTOS DE INVESTIGACIÓN Duration: 01/01/2020 - 31/12/2021 Description: Detección de eventos motores mediante IMUs para etiquetado de señales EEG (DETECTA) Head Researcher: Eduardo Iáñez AICO2019 Title: Hierarchical model creation and robust localization of mobile robots in social environments Funded by: Generalitat Valenciana Duration: 01/01/2019 a 31/12/2020 Description: The project focuses on the field of map construction and localization using omnidirectional vision, advancing towards a hybrid topological-metric paradigm, which allows (a) the incremental construction of a semantic map as the robot explores the unknown environment and (b) the estimation of the robot's position and orientation with precision, with 6 degrees of freedom and at a reasonable computational cost. Additionally, to improve the integration of the mobile robot in real social environments, where it must interact with people, some features will be included in the model to make it compatible with human perception. Keywords: Mobile robot; omnidirectional vision; hybrid map; hierarchical localization; social environments Head Researcher: L. Payá Emergentes desarrollo BCI rehabilitación Title: Desarrollo de nuevas interfaces cerebro-máquina para la rehabilitación de miembro inferior Funded by: CONSELLERIA DE INNOVACIÓN, UNIVERSIDADES, CIENCIA Y SOCIEDAD DIGITAL Duration: 01/01/2019 - 31/03/2021 Description: La apoplejía o el accidente cerebrovascular (ACV) y la lesión medular son algunas de las causas que ocasionan trastornos motores en personas debido al daño asociado al sistema nervioso. Dicho daño conlleva un considerable descenso en su calidad de vida, ya que las lesiones ocasionadas suelen interrumpir las vías sensoriales y motoras, conduciendo a una marcha patológica permanente y a un deterioro de la deambulación independiente. Recientemente, han aparecido diversos exoesqueletos robóticos con el fin de ser utilizados en terapias de rehabilitación. El uso de este tipo de dispositivos asociados a interfaces cerebro-máquina (BMI), que decodifican las señales electroencefalográficas (EEG) del paciente para interpretar los comandos de movimiento, puede mejorar la neuroplasticidad neuronal en las terapias de rehabilitación. En este aspecto, el grupo de investigación del Dr. Contreras-Vidal (Universidad de Houston, Texas E.E.U.U) en colaboración con el grupo de Neuro-Rehabilitación del Instituto Cajal del Dr. Pons en España, realizaron un primer estudio clínico sobre el uso de este tipo de robots durante la rehabilitación de la marcha de pacientes de ACV, demostrando su viabilidad en rehabilitación. Sin embargo, todavía existen dos inconvenientes para su aplicación de forma extendida. En primer lugar, es preciso que los algoritmos de control mejoren su precisión, lo que aboga por desarrollar nuevos algoritmos que permitan BMIs más robustas y fiables. En segundo lugar, dichos dispositivos robóticos tienen un alto coste económico, desde unos 70.000€ hasta 200.000€ según modelo y propiedades, lo que dificulta su implantación, siendo necesario la búsqueda de alternativas de inferior coste. Head Researcher: Mario Ortiz García WALK - Controlling lower-limb exoskeletons by means of brain-machine interfaces to assist people with walking disabilities Title: WALK – Control de exoesqueletos de miembro inferior mediante interfaces cerebro-máquina para asistir a personas con problemas de marcha Funded by: Ministerio de Ciencia, Innovación y Universidades Duration: 1/01/2019 - 30/09/2022 Description:
Stroke and Spinal Cord Injury (SCI) are two of the major motor disorders due to damage in the human nervous system leading to physical impairment in Western society. These conditions will in general disrupt sensory and motor pathways that in turn lead to permanent pathological gait, resulting in impaired independent ambulation. Walking incorrectly creates a stigma and makes patients more susceptible to injury, affecting quality of life. Ambulation after trauma has long been a research topic, but more progress is needed.
With recent advances in robotic technologies, lower-limb robotic exoskeletons have emerged as aids for over-ground, bipedal ambulation for individuals with motor limitations. Interfaces between robotic exoskeletons and users are often implemented via a combination of mechanical and electrical devices. However, these interfaces are not what humans naturally use. The usability and clinical relevance of these robotics systems could be further enhanced by brain-machine interfaces (BMIs). BMIs bypass motor systems of any kind. BMIs make context-based decisions from recordings of the users brain activity, thus allowing direct and voluntary operation of the devices beyond users diminished physical capabilities. Although the feasibility of using BMIs to control lower-limb exoskeletons has been demonstrated, important challenges have to be still addressed to deploy these systems as assistive devices in the clinic and at home: (1) Robust BMIs with better performances have to be developed to send safely basic commands (walk and stop) to exoskeletons; (2) BMIs for turning left/right exoskeletons, increasing/decreasing their speed, or stopping them if unexpected obstacles appear have to be implemented for providing more capabilities to these systems; (3) Training schemes to reduce the number of training sessions required to use BMIs, and to reach higher performances have to be developed; and (4) More clinical studies have to be carried out to validate the health benefits of using these systems. All these challenges will be addressed in the WALK project.
The WALK project will go beyond the current state-of-the-art by developing more robust BMIs with higher performances not only able to control the exoskeletons for walking and stopping safely, but also to send them commands for turning left/right, increasing/decreasing their speed, or stopping them if unexpected obstacles appear. To improve the performance of the new BMIs and reduce the number of training sessions, new training strategies based on transcranial direct current stimulation (tDCS) and virtual reality will be developed. Furthermore, the project will demonstrate how the use lower-limb exoskeletons commanded by BMIs could have health benefits for SCI people, particularly with respect to pain, spasticity and autonomic activity.
Thus, the WALK project will allow people with locomotion difficulties to command lower-limb robotic exoskeletons by means of BMIs in order to provide them walking assistance in the clinic and at home. This will contribute that neurologically injured patients have higher activity at home and participation in society. Head Researcher: José María Azorín Poveda BinaryRobot Title: Design and development of a hybrid structure robot with binary-operated hydraulic actuators. Funded by: Generalitat Valenciana Duration: Del 01/01/2018 al 31/12/2019 Description:
Steel structures require inspection, maintenance, and repair tasks to ensure their proper functioning, stability, structural integrity, longevity, and aesthetic quality. Such structures are present in numerous constructions such as bridges, ports, airports, telecommunications towers, stadiums, power lines, power plants, and industrial plants, as well as forming part of the framework of most buildings. Typically, the maintenance tasks for these vertical structures are performed by human operators who must climb the structures to carry out these tasks, subjecting them to serious risks, including falling from considerable heights or electrocution. To avoid exposing human operators to such risks, for the past couple of decades, numerous researchers worldwide have been studying the possibility of using climbing robots to perform these dangerous tasks at height.
The main objective we propose in this project is to develop a new articulated climbing robot for the exploration and maintenance of vertical steel structures, with the ability to move in three-dimensional space. The main innovation of the robot to be developed in this project, compared to other climbing robots developed to date, is that the proposed robot will have binary actuation (all-or-nothing actuators), which greatly simplifies the planning and control of its movements. Additionally, the robot to be developed will have a moderately high degree of kinematic redundancy (between 10 and 12 degrees of freedom), allowing it to enjoy sufficiently high mobility to explore three-dimensional structures despite having only binary actuators. In this way, by combining binary actuation and kinematic redundancy, we aim to achieve a balance between simplicity and freedom of movement, thereby addressing the main complexity issues that currently prevent climbing robots from being used more extensively. Keywords: climbing robot, binary operation Head Researcher: M. Ballesta OMMNI-SLAM Title: Map Building by Means of Appearance Visual Systems for Robot Navigation Funded by: CICYT Ministerio de Ciencia e Innovación Duration: 01/01/2017 al 31/12/2019 Description: In order to be truly autonomous, a mobile robot should be capable of navigating through any kind of environment while carrying out a task. In order to do that it is considered necessary that the robot possesses the ability to create a model of its workspace that allows to estimate its position inside it and navigate along a trajectory. Keywords: Mobile robots, autonomous navigation, computer vision, omnidirectional systems Head Researcher: L. Payá, O. Reinoso CSP–2017 Title: International Conference of Mobile Brain-Body Imaging (MoBI) and the Neuroscience of Art, Innovation and Creativity Funded by: Office of Naval Research Global (Agency Proposal No. N00014-17-S-B001) Duration: 29/09/2017 hasta 31/12/2017 Head Researcher: José María Azorín Poveda BCI-hackathon Title: Designers Brain-Computer Interface (BCI) hackathon Funded by: IEEE Systems, Man, and Cybernetics Duration: 10/09/2017 hasta 13/09/2017 Head Researcher: José María Azorín Poveda REASISTE Title: Red Iberoamericana de rehabilitación y asistencia de pacientes con daño neurológico mediante exoesqueletos robóticos de bajo coste. Funded by: Programa Iberoamericano de Ciencia y Tecnología para el Desarrollo (CYTED) Duration: 1/01/2016 hasta 31/12/2019 Description: Patients with neurological damage are a very disadvantaged group in Latin America that has not been dedicated to a coordinated transnational and multidisciplinary effort of clinical centers, research centers, universities and companies. Neurological damage is one of the main causes of disability, with the number of people with disabilities in Ibero-America exceeding 72 million (affecting approximately 11% of the total population of Ibero-America). The main objective of Reasiste is to establish a broad working forum to enable and facilitate cooperation and the exchange of knowledge among stakeholders from Ibero-America working in the field of rehabilitation and care of patients with neurological damage. The network is articulated around the development of one or several robotic exoskeletons (ERs) to improve the rehabilitation and assistance of patients with neurological damage. Thereby, once the network is completed, several ERs will be available that can be used by clinical centers in rehabilitation therapies and assistance to patients with neurological damage. Although the people who will benefit first from the developments of this network are the group of patients with neurological damage, the ERs of the network could be used to improve the health of patients with other pathologies, such as, for example, patients with poliomyelitis or botulism. Head Researcher: José María Azorín Poveda ASSOCIATE Title: Decodificación y estimulación de actividad cerebral sensorial y motora para permitir potenciación a largo plazo mediante estimulación Hebbiana y estimulación asociativa pareada durante la rehabilitación de la marcha. Funded by: Ministerio de Economía y Competitividad Duration: 1/01/2015 hasta 31/12/2019 Description: Cerebral vascular accident (CVA, Stroke) and Spinal cord injury (SCI) are two of the major motor disorders due to damage in the human nervous system leading to physical impairment in Western society. These conditions will in general disrupt sensory and motor pathways that in turn lead to permanent pathological gait, resulting in impaired independent ambulation. Head Researcher: José María Azorín Poveda BioMot Title: Smart Wearable Robots with Bioinspired Sensory-Motor Skills · BioMot Funded by: VII Programa Marco Comisión Europea Duration: 1/10/2013 hasta 1/10/2016 Description: Wearable robots (WR) are person-oriented devices, usually in the form of exoskeletons. These devices are worn by human operators to enhance or support a daily function, such as walking. WRs find applications in the enhancement of intact operators or in clinical environments, e.g. rehabilitation of gait function in neurologically injured patients. Most advanced WRs for human locomotion still fail to provide the real-time adaptability and flexibility presented by humans when confronted with natural perturbations, due to voluntary control or environmental constraints. Current WRs are extra body structures inducing fixed motion patterns on its user. Head Researcher: I.P.: José María Azorín Poveda Coordinador:Juan C. Moreno, CSIC ComunicacionEEG Title: Sistema de comunicación de necesidades básicas basado en señales EEG para personas con daño cerebral y/o medular severo. Funded by: Fundación Mapfre. Duration: 14/02/2013 hasta 13/02/2014 Head Researcher: José María Azorín Poveda Iberada Title: Iberada - Red Iberoamericana para el estudio y desarrollo de aplicaciones TIC basadas en interfaces adaptadas a personas con discapacidad. Funded by: Programa Iberoamericano de Ciencia y Tecnología para el Desarrollo (CYTED) Duration: 1/01/2012 hasta 31/12/2015 Description: Access to information and communication technologies (ICT) presents serious difficulties for people with disabilities or elder who have perception, motor or intellectual severe limitations. Different interfaces have been developed to alleviate these barriers, for example in voice recognition, eye tracking or brain-computer interaction. The aim is to improve both the control of personal devices (prostheses, wheelchairs …) and access to knowledge through the Internet, reducing the «digital divide» by enabling them to use the computer and ICT. Head Researcher: José María Azorín Poveda Brain2Motion Title: Brain2Motion - Desarrollo de una Interfaz Multimodal Cerebro-Neural para el Control de un Sistema Robótico Híbrido Exoesqueleto - Neuroprótesis de Miembro Superior. Funded by: Ministerio de Economía y Competitividad Duration: 1/01/2012 hasta 31/12/2014 Description: Exoskeletal robots (ERs) are person-oriented robots that supplement the function of a limb or replace it completely. A possible alternative to ERs are Motor Neuro-Prostheses (MNP) based on Functional Electrical Stimulation (FES). Both ERs and MNPs are technologies that seek to restore or substitute motor function. MNPs constitute an approach to restoring function by means of artificially controlling human muscles or muscle nerves with FES. ERs use volitional commands for controlling the application of controlled forces to drive paralyzed or weak limbs. Head Researcher: José María Azorín Poveda SNIBE2009 Title: Sistema de navegación por Internet basado en la electrooculografía para personas discapacitadas. Funded by: Fundación Mapfre. Duration: 22/03/2010 hasta 21/03/2011 Description: Sistema de navegación por Internet basado en la electrooculografía para personas discapacitadas. Head Researcher: José María Azorín Poveda Coste4Dis Title: Coste4Dis - Control de sistemas telerobóticos mediante interfaces avanzadas para personas discapacitadas. Funded by: Ministerio de Ciencia e Innovación Duration: 1/01/2009 hasta 31/12/2011 Head Researcher: José María Azorín Poveda ICNIC2007 Title: Interfaz cerebral no invasiva para control de un sistema domótico por personas discapacitadas. Funded by: Fundación Mapfre Duration: 22/01/2008 hasta 31/03/2009 Head Researcher: José María Azorín Poveda DPI2005_25216_E Title: 1st International UMH Robotics Winter School on Telesurgery Funded by: Ministerio de Educación y Ciencia Duration: 1/1/2006 hasta 1/1/2007 Head Researcher: José María Azorín Poveda GV04A_667 Title: Técnicas avanzadas en la telemanipulación de objetos sólidos deformables. Aplicaciones a sistemas de cirugía robotizada asistida. Funded by: Consellería de Cultura, Educación y Deporte (Generalitat Valenciana) Duration: 1/1/2004 hasta 31/12/2005 Head Researcher: José María Azorín Poveda Technical Assistance Estudio de la actividad cerebral con EEG para BCI basada en imaginación motora de la mano Title: Estudio de la actividad cerebral con EEG para BCI basada en imaginación motora de la mano Funded by: ARQUIMEA RESEARCH CENTER S.L.U. Duration: desde 20/07/2022 hasta 19/11/2022 Keywords: EEG Head Researcher: José M. Azorín RemoteRoboticsLab Title: Convenio de Colaboración para el desarrollo del proyecto "Hacia la formación práctica ubicua y digital en robótica mediante laboratorios remotos” Funded by: Centro de Inteligencia Digital de la Provincia de Alicante (CENID) Duration: 6 meses (abril 2022 - octubre 2022) Description: Este proyecto pretende desarrollar un laboratorio remoto, que consiste en una plataforma ciberfísica que permite al estudiantado de carreras técnicas conectarse a robots de forma remota, para hacer prácticas de laboratorio y experimentos con dichos robots, a través de Internet. Esto permitirá dotar al estudiantado de mayor flexibilidad espacial y temporal, permitiéndoles hacer prácticas de laboratorio de forma ubicua, sin limitarlos a tener que desplazarse a un laboratorio físico para realizar las prácticas únicamente en las horas en las que el acceso a dicho laboratorio está habilitado. El estudiantado se conectará a los robots reales a través de un servidor web y, a través de una interfaz, podrá comandar movimientos o experimentos para realizar con los robots remotos. El movimiento de los robots se mostrará a través de una webcam en tiempo real, y también se devolverá información relativa a los resultados del experimento remoto, información que será captada mediante sensores de posición, velocidad, y fuerza, colocados en el robot real. Los robots remotos que se implementarán para hacer prácticas a distancia serán de tipo paralelo o de cadena cinemática cerrada, ya que éstos disponen de mayor riqueza que los robots tradicionales de cadena cinemática serie, a la hora de ser estudiados en asignaturas de control y robótica. Keywords: Robot paralelo, laboratorio remoto, prácticas de laboratorio, identificación, control Head Researcher: Adrián Peidró abionica1.21T Title: Empleo de algoritmos para conciencia situacional en vuelo mediante visión artificial Funded by: Abionica Solutions S.L. Duration: 05/2021 - 11/2021 Head Researcher: A. Gil EUNOVA2001_WINES Title: Characterizing the neural coding of taste and the gustatory cortical response (gERP) induced by red wines Funded by: EUNOVA 2001, S.L. / University of Houston HILTON COLLEGE Duration: 1/06/2021 hasta: 28/02/2022 Head Researcher: Mario Ortiz García abionica1.20T Title: Desarrollo de algoritmos de detección y seguimiento de marcas visuales artificiales para la navegación de drones en tareas de inspección de grandes terrenos Funded by: ABIONICA SOLUTIONS S.L. Duration: 11/2020 - 04/2021 Head Researcher: A. Gil ACN2020 Title: Aplicación de sistemas de visión artificial para el desarrollo de entornos de realidad aumentada y análisis estadístico de datos metrológicos Funded by: AUTOMATICA Y CONTROL NUMÉRICO, S.L. Duration: 2020 Head Researcher: O. Reinoso OPTIMASHOE Title: Aplicación Robotizada de Pátina en Productos Acabados en Piel (OPTIMASHOE) Funded by: Bespoke Factory Group Duration: 2020 - 2 años Description: A petición de una empresa, la UMH realiza las tareas de investigación relacionadas con la programación de un robot colaborativo para ejecutar actividades de pulido y abrillantado de calzado. Keywords: Pulido, Robótica colaborativa Head Researcher: Carlos Perez-Vidal ACTECO1.20CC Title: Sistema reconfigurable y flexible de almacenamiento de energía renovable a partir de residuos Funded by: Duration: 23/12/2020 - 22/02/2023 Head Researcher: Carlos Perez-Vidal EUNOVA2001_CONFORT Title: Análisis del Confort del Calzado mediante Señales EEG Funded by: EUNOVA 2001, S.L. Duration: 21/07/2020 hasta: 20/12/2020 Head Researcher: José María Azorín Poveda Tonalidad de Pieles Title: Desarrollo de un software para la detección y medición de los diferentes tonos de piel Funded by: PIES CUADRADOS LEATHER S.L. Duration: 2019 - 2020 Description: El objetivo de esta propuesta es el estudio, desarrollo e implementación de un sistema de clasificación mediante visión por computador de la tonalidad de piezas de cuero teñido atendiendo a la apariencia visual del tono de la piel. Head Researcher: O. Reinoso Ingeniería Industrial, Automatización de Maquinaria Industrial y Robótica Title: Contrato de asesoramiento técnico y científico en el ámbito de la Ingeniería Industrial, Automatización de Maquinaria Industrial y Robótica Funded by: SIMPLICITYWORKS EUROPE SL Duration: 2019 - 6 meses Description: Contrato de asesoramiento técnico y científico en el ámbito de la Ingeniería Industrial, Automatización de Maquinaria Industrial y Robótica Keywords: Asesoramiento Head Researcher: Carlos Pérez Vidal Desarrollo de un nuevo procedimiento para incrementar el nivel de pegado de polímeros inyectados en molde cerrado Title: Contrato para la realización del proyecto "Desarrollo de un nuevo procedimiento para incrementar el nivel de pegado de polímeros inyectados en molde cerrado" Funded by: SIMPLICITYWORKS EUROPE SL Duration: 2018 - 2 años Description: Desarrollo de un nuevo procedimiento para incrementar el nivel de pegado de polímeros inyectados en molde cerrado Keywords: Moldes, polímeros, pegado Head Researcher: Carlos Pérez Vidal QBot Title: Contrato de desarrollo de software Funded by: Q-BOT LIMITED Duration: 2016 Head Researcher: O. Reinoso IXION1 Title: Contrato para la realización de los trabajos de desarrollo experimental que forman parte del Proyecto presentado al Plan Avanza2 de título "iCOPILOT Asistente inteligente a la conducción" Funded by: IXION INDUSTRY AND AEROSPACE, S.L. Duration: 2014 Head Researcher: O. Reinoso IXION2 Title: Contrato para la realización de los trabajos de desarrollo experimental que forman parte del proyecto presentado al Plan Avanza2 de título "SUPVERT Vehículo Autónomo Aéreo para Inspección de estructuras Verticales" Funded by: IXION INDUSTRY AND AEROSPACE S.L. Duration: 2014 Head Researcher: O. Reinoso Inter-Univesity Collaboration Projects NeurotechRI Title: NeurotechRI - European University of Brain and Technology - Research and Innovation Funded by: EUROPEAN COMMISSION. Programme: H2020-EU.5. - SCIENCE WITH AND FOR SOCIETY. Duration: 1-10-2021 hasta 30-09-2024 Head Researcher: Coordinador: Tansu Celikel (Radboud Universiteit, Holanda) IP UMH: Juana Gallar Martínez |