Managing Data Association in visual SLAM using SIFT features
Resumen: This paper describes an approach to solve the Simultaneous Localization and Mapping (SLAM) problem for autonomous mobile robots using visual landmarks and a Rao-Blackwellized particle filter. Our map is represented by a set of three dimensional landmarks referred to a global reference frame. We use significant points extracted from stereo images as natural landmarks. In particular we employ SIFT features found in the environment. Each landmark is associated with a visual descriptor that partially differentiates it from others. We concentrate on a reduced set of highly stable landmarks. In order to do that, we track a visual feature for a significant number of frames prior to integrating it in the filter. As a result, we obtain different examples that represent the same natural landmark. Using this procedure, a better model for each landmark is obtained, which lets us improve data association among the landmarks in the map. |