A Comparison of Path Planning Strategies for Autonomous Exploration and Mapping of Unknown Environments Abstract: To date, a large number of algorithms to solve the problem of autonomous exploration and mapping has been presented. However, few efforts have been made to compare these techniques. In this paper, an extensive study of the most important methods for autonomous exploration and mapping of unknown environments is presented. Furthermore, a representative subset of these techniques has been chosen to be analysed. This subset contains methods that differ in the level of multi-robot coordination and in the grade of integration with the simultaneous localization and mapping (SLAM) algorithm. These exploration techniques were tested in simulation and compared using different criteria as exploration time or map quality. The results of this analysis are shown in this paper. The weaknesses and strengths of each strategy have been stated and the most appropriate algorithm for each application has been determined. |