Creation and maintenance of visual incremental maps and hierarchical localization Dr. Vicente Román Erades Durante los últimos años, la presencia de la robótica móvil ha aumentado substancialmente en una gran variedad de entornos y escenarios. Es habitual encontrar el uso de robots para llevar a cabo aplicaciones repetitivas y específicas, así como tareas en entornos peligrosos o con resultados que deben ser muy precisos. Dichos robots se pueden encontrar tanto en ámbitos industriales como en familiares, educativos y de salud; por ello, requieren un trabajo específico y continuo de investigación y mejora. En concreto, los robots móviles autónomos requieren de una tecnología precisa para desarrollar tareas sin ayuda del ser humano.
Para realizar tareas de manera autónoma, los robots deben ser capaces de navegar por un entorno ‘a priori’ desconocido. Por tanto, los robots móviles autónomos deben ser capaces de realizar la tarea de creación de mapas, creando un modelo del entorno y la tarea de localización, esto es estimar su posición y orientación.
La presente tesis plantea un diseño y análisis de diferentes métodos para realizar las tareas de creación de mapas y localización en entornos de interior. Para estas tareas se emplea únicamente información visual, en concreto, imágenes omnidireccionales, con un campo de visión de 360º. En los capítulos de este trabajo se plantean soluciones a las tareas de navegación autónoma del robot mediante transformaciones en las imágenes que este es capaz de captar.
En cuanto a los trabajos realizados, en primer lugar, se presenta un estudio de descriptores de apariencia global en tareas de localización. Los descriptores de apariencia global son transformaciones capaces de obtener un único vector que describa globalmente una imagen. En este trabajo se realiza un estudio exhaustivo de diferentes métodos de apariencia global adaptando su uso a imágenes omnidireccionales. Se trata de obtener un algoritmo optimizado para estimar la posición y orientación del robot en entornos reales de oficina, donde puede surgir cambios visuales en el entorno como movimientos de cámara, de mobiliario o de iluminación en la escena. También se evalúa el tiempo empleado para realizar esta estimación, ya que el trabajo de un robot debe ser preciso, pero también factible en cuanto a tiempos de computación.
Además, se presenta una segunda aplicación donde el estudio se centra en la creación de mapas de entornos de interior de manera incremental. Esta aplicación hace uso de los descriptores de apariencia global estudiados para la tarea de localización, pero en este caso se utilizan para la construcción de mapas utilizando la técnica de ‘clustering’ incremental. En esta aplicación, conjuntos de imágenes visualmente similares se agrupan en un único grupo. La forma y cantidad de grupos es variable conforme el robot avanza en el entorno. Actualmente, existen diferentes algoritmos para obtener la separación de un entorno en nodos, pero las soluciones efectivas se realizan de manera ‘off-line’, es decir, a posteriori una vez se tienen todas las imágenes captadas. El trabajo presentado permite realizar esta tarea de manera incremental mientras el robot explora el nuevo entorno. Realizar esta tarea mientras se visita el resto del entorno puede ser muy interesante ya que tener el mapa separado por nodos con relaciones de proximidad entre ellos se puede ir utilizando para tareas de localización jerárquica. Además, es posible reconocer entornos ya visitados o similares a nodos pasados.
Por último, la tesis también incluye el estudio de técnicas de aprendizaje profundo (‘deep learning’) para tareas de localización. En concreto, se estudia el uso de las redes siamesas, una técnica poco explorada en robótica móvil, que está basada en las clásicas redes convolucionales, pero en la que dos imágenes son evaluadas al mismo tiempo. Estas redes dan un valor de similitud entre el par de imágenes de entrada, lo que permite realizar tareas de localización visual. En este trabajo se expone esta técnica, se presentan las estructuras que pueden tener estas redes y los resultados tras la experimentación. Se evalúa la tarea de localización en entornos heterogéneos en los que el principal problema viene dado por cambios en la iluminación de la escena. Con las redes siamesas se trata de resolver el problema de estimación de estancia, el problema de localización jerárquica y el de localización absoluta.
|