Home > arte3.2.0 > robots > ABB > IRB1600_X145_M2004 > parameters.m

parameters

PURPOSE ^

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

SYNOPSIS ^

function robot = parameters()

DESCRIPTION ^

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
   PARAMETERS Returns a data structure containing the parameters of the
   ABB IRB1600.

   Author: . FALO Universidad Miguel Hernández de Elche. 
   email: FALO@umh.es date:   09/01/2012
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

CROSS-REFERENCE INFORMATION ^

This function calls: This function is called by:

SOURCE CODE ^

0001 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
0002 %   PARAMETERS Returns a data structure containing the parameters of the
0003 %   ABB IRB1600.
0004 %
0005 %   Author: . FALO Universidad Miguel Hernández de Elche.
0006 %   email: FALO@umh.es date:   09/01/2012
0007 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
0008 
0009 % Copyright (C) 2012, by FALO
0010 %
0011 % This file is part of ARTE (A Robotics Toolbox for Education).
0012 %
0013 % ARTE is free software: you can redistribute it and/or modify
0014 % it under the terms of the GNU Lesser General Public License as published by
0015 % the Free Software Foundation, either version 3 of the License, or
0016 % (at your option) any later version.
0017 %
0018 % ARTE is distributed in the hope that it will be useful,
0019 % but WITHOUT ANY WARRANTY; without even the implied warranty of
0020 % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
0021 % GNU Lesser General Public License for more details.
0022 %
0023 % You should have received a copy of the GNU Leser General Public License
0024 % along with ARTE.  If not, see <http://www.gnu.org/licenses/>.
0025 function robot = parameters()
0026 
0027 robot.name= 'abb_irb1600_X145_m2004';
0028 
0029 %Path where everything is stored for this robot
0030 %robot.path = 'robots/abb/irb1600_X145_m2004';
0031 
0032 robot.DH.theta= '[q(1) q(2)-pi/2 q(3) q(4) q(5) q(6)+pi]';
0033 robot.DH.d='[0.4865 0 0 0.6 0 0.065]';
0034 robot.DH.a='[0.15 0.7 0 0 0 0]';
0035 robot.DH.alpha= '[-pi/2 0 -pi/2 pi/2 -pi/2 0]';
0036 robot.J=[];
0037 
0038 
0039 robot.inversekinematic_fn = 'inversekinematic_abb_irb1600_X145_m2004(robot, T)';
0040 
0041 %number of degrees of freedom
0042 robot.DOF = 6;
0043 
0044 %rotational: 0, translational: 1
0045 robot.kind=['R' 'R' 'R' 'R' 'R' 'R'];
0046 
0047 %minimum and maximum rotation angle in rad
0048 robot.maxangle =[deg2rad(-180) deg2rad(180); %Axis 1, minimum, maximum
0049                 deg2rad(-90) deg2rad(150); %Axis 2
0050                 deg2rad(-245) deg2rad(65); %Axis 3: Unlimited (400º default)
0051                 deg2rad(-200) deg2rad(200); %Axis 4
0052                 deg2rad(-115) deg2rad(115);  %Axis 5: Unlimited (800º default)
0053                 deg2rad(-400) deg2rad(400)]; %Axis 6: Unlimited (800º default)
0054 
0055 %maximum absolute speed of each joint rad/s or m/s
0056 robot.velmax = [deg2rad(150); %Axis 1, rad/s
0057                 deg2rad(160); %Axis 2, rad/s
0058                 deg2rad(170); %Axis 3, rad/s
0059                 deg2rad(320); %Axis 4, rad/s
0060                 deg2rad(400); %Axis 5, rad/s
0061                 deg2rad(460)];%Axis 6, rad/s
0062 
0063 robot.accelmax=robot.velmax/0.1; % 0.1 is here an acceleration time
0064             
0065             % end effectors maximum velocity
0066 robot.linear_velmax = 2.5; %m/s
0067 
0068 %base reference system
0069 robot.T0 = eye(4);
0070 
0071 %INITIALIZATION OF VARIABLES REQUIRED FOR THE SIMULATION
0072 %position, velocity and acceleration
0073 robot=init_sim_variables(robot);
0074 
0075 % GRAPHICS
0076 robot.graphical.has_graphics=1;
0077 robot.graphical.color = [255 20 51]./255;
0078 %for transparency
0079 robot.graphical.draw_transparent=0;
0080 %draw DH systems
0081 robot.graphical.draw_axes=1;
0082 %DH system length and Font size, standard is 1/10. Select 2/20, 3/30 for
0083 %bigger robots
0084 robot.graphical.axes_scale=1;
0085 %adjust for a default view of the robot
0086 robot.axis=[-1.75 1.75 -1.75 1.75 0 2];
0087 %read graphics files
0088 robot = read_graphics(robot);
0089 
0090 
0091 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
0092 %DYNAMIC PARAMETERS
0093 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
0094 robot.has_dynamics=1;
0095 
0096 %consider friction in the computations
0097 robot.dynamics.friction=0;
0098 
0099 %link masses (kg)
0100 robot.dynamics.masses=[0 157.5 70 20 2.25 0.25]; %Total 250kg
0101 
0102 %COM of each link with respect to own reference system
0103 robot.dynamics.r_com=[0       0.1          0; %(rx, ry, rz) link 1
0104     -0.4     0     0; %(rx, ry, rz) link 2
0105     0    0     0.3;  %(rx, ry, rz) link 3
0106     0       0       0;%(rx, ry, rz) link 4
0107     0       0           -0.075;%(rx, ry, rz) link 5
0108     0       0         -0.0032];%(rx, ry, rz) link 6
0109 
0110 %Inertia matrices of each link with respect to its D-H reference system.
0111 % Ixx    Iyy    Izz    Ixy    Iyz    Ixz, for each row
0112 robot.dynamics.Inertia=[0      0.35    0       0    0    0;
0113     1.3     5.24    5.39    0    0    0;
0114     1    1.2    0.3    0    0    0;
0115     0.12    0.1    0.12    0    0    0;
0116     .3e-2    .4e-2    .3e-2    0    0    0;
0117     .15e-2    .15e-2    .04e-2    0    0    0];
0118 robot.motors=load_motors([5 5 5 4 4 4]);
0119 %Speed reductor at each joint
0120 robot.motors.G=[300 300 300 300 300 300];

Generated on Fri 03-Jan-2014 12:20:01 by m2html © 2005