%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% PARAMETERS Returns a data structure containing the parameters of the ABB IRB6650S_90_390. Author: Arturo Gil. Universidad Miguel Hernández de Elche. email: arturo.gil@umh.es date: 09/01/2012 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
0001 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 0002 % PARAMETERS Returns a data structure containing the parameters of the 0003 % ABB IRB6650S_90_390. 0004 % 0005 % Author: Arturo Gil. Universidad Miguel Hernández de Elche. 0006 % email: arturo.gil@umh.es date: 09/01/2012 0007 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 0008 0009 % Copyright (C) 2012, by Arturo Gil Aparicio 0010 % 0011 % This file is part of ARTE (A Robotics Toolbox for Education). 0012 % 0013 % ARTE is free software: you can redistribute it and/or modify 0014 % it under the terms of the GNU Lesser General Public License as published by 0015 % the Free Software Foundation, either version 3 of the License, or 0016 % (at your option) any later version. 0017 % 0018 % ARTE is distributed in the hope that it will be useful, 0019 % but WITHOUT ANY WARRANTY; without even the implied warranty of 0020 % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 0021 % GNU Lesser General Public License for more details. 0022 % 0023 % You should have received a copy of the GNU Leser General Public License 0024 % along with ARTE. If not, see <http://www.gnu.org/licenses/>. 0025 function robot = parameters() 0026 0027 robot.name= 'ABB_IRB6650S_200_300'; 0028 0029 robot.DH.theta= '[q(1) q(2)-pi/2 q(3) q(4) q(5) q(6)+pi]'; 0030 robot.DH.d='[0.630 0 0 2.042 0 0.2]'; 0031 robot.DH.a='[0.600 1.280 0.2 0 0 0]'; 0032 robot.DH.alpha= '[-pi/2 0 -pi/2 pi/2 -pi/2 0]'; 0033 0034 robot.J=[]; 0035 0036 0037 robot.inversekinematic_fn = 'inversekinematic_irb6650S_200_300(robot, T)'; 0038 0039 %number of degrees of freedom 0040 robot.DOF = 6; 0041 0042 %rotational: 0, translational: 1 0043 robot.kind=['R' 'R' 'R' 'R' 'R' 'R']; 0044 0045 %minimum and maximum rotation angle in rad 0046 robot.maxangle =[deg2rad(-180) deg2rad(180); %Axis 1, minimum, maximum 0047 deg2rad(-40) deg2rad(160); %Axis 2, minimum, maximum 0048 deg2rad(-180) deg2rad(70); %Axis 3 0049 deg2rad(-300) deg2rad(300); %Axis 4: 0050 deg2rad(-120) deg2rad(120); %Axis 5 0051 deg2rad(-360) deg2rad(360)]; %Axis 6: 0052 0053 %maximum absolute speed of each joint rad/s or m/s 0054 robot.velmax = [deg2rad(100); %Axis 1, rad/s 0055 deg2rad(90); %Axis 2, rad/s 0056 deg2rad(90); %Axis 3, rad/s 0057 deg2rad(150); %Axis 4, rad/s 0058 deg2rad(120); %Axis 5, rad/s 0059 deg2rad(235)];%Axis 6, rad/s 0060 robot.accelmax=robot.velmax/0.1; % 0.1 is here an acceleration time 0061 % end effectors maximum velocity 0062 robot.linear_velmax = 1.0; %m/s, unavailable from datasheet 0063 0064 %base reference system 0065 robot.T0 = eye(4); 0066 0067 %INITIALIZATION OF VARIABLES REQUIRED FOR THE SIMULATION 0068 %position, velocity and acceleration 0069 robot=init_sim_variables(robot); 0070 0071 0072 % GRAPHICS 0073 robot.graphical.has_graphics=1; 0074 robot.graphical.color = [205 20 40]./255; 0075 %for transparency 0076 robot.graphical.draw_transparent=0; 0077 %draw DH systems 0078 robot.graphical.draw_axes=1; 0079 %DH system length and Font size, standard is 1/10. Select 2/20, 3/30 for 0080 %bigger robots 0081 robot.graphical.axes_scale=1; 0082 %adjust for a default view of the robot 0083 robot.axis=[-3 3 -3 3 0 3]; 0084 %read graphics files 0085 robot = read_graphics(robot); 0086 0087 %DYNAMICS 0088 robot.has_dynamics=0;