%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% PARAMETERS Returns a data structure containing the parameters of the KUKA KR30_jet. Authors: Sir Juan Carlos Blay, Sir Francisco Manuel Sabuco, Mr. Fernando Torres and Lord Emilio López. Universidad Miguel Hernández de Elche. date: 20/12/2012 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
0001 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 0002 % PARAMETERS Returns a data structure containing the parameters of the KUKA KR30_jet. 0003 % 0004 % Authors: Sir Juan Carlos Blay, Sir Francisco Manuel Sabuco, Mr. Fernando Torres and Lord Emilio López. 0005 % Universidad Miguel Hernández de Elche. 0006 % date: 20/12/2012 0007 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 0008 0009 0010 % Copyright (C) 2012, by Arturo Gil Aparicio 0011 % 0012 % This file is part of ARTE (A Robotics Toolbox for Education). 0013 % 0014 % ARTE is free software: you can redistribute it and/or modify 0015 % it under the terms of the GNU Lesser General Public License as published by 0016 % the Free Software Foundation, either version 3 of the License, or 0017 % (at your option) any later version. 0018 % 0019 % ARTE is distributed in the hope that it will be useful, 0020 % but WITHOUT ANY WARRANTY; without even the implied warranty of 0021 % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 0022 % GNU Lesser General Public License for more details. 0023 % 0024 % You should have received a copy of the GNU Leser General Public License 0025 % along with ARTE. If not, see <http://www.gnu.org/licenses/>. 0026 function robot = parameters() 0027 0028 %Denavit-Hartemberg parameters 0029 robot.DH.theta= '[deg2rad(20.34) q(2)+deg2rad(69.66) q(3) q(4) q(5) q(6)]'; 0030 robot.DH.d='[q(1) 0 0 -0.83 0 -0.15]'; 0031 robot.DH.a='[-0.486 0.85 0.145 0 0 0]'; 0032 robot.DH.alpha= '[0 0 pi/2 -pi/2 pi/2 pi]'; 0033 0034 %Jacobian matrix 0035 robot.J=[]; 0036 0037 %robot name 0038 robot.name= 'KUKA_KR30_jet'; 0039 0040 %inverse kinematic function 0041 robot.inversekinematic_fn = 'inversekinematic_kuka_kr30_jet(robot, T)'; 0042 0043 %number of degrees of freedom 0044 robot.DOF = 6; 0045 0046 %joint movement kind; rotational: 5, translational: 1 0047 robot.kind=['T' 'R' 'R' 'R' 'R' 'R']; 0048 0049 %minimum and maximum rotation angle in rad 0050 robot.maxangle =[-2.5 2.75; %Axis 1, minimum, maximum 0051 deg2rad(0) deg2rad(180); %Axis 2, minimum, maximum 0052 deg2rad(-120) deg2rad(158); %Axis 3 0053 deg2rad(-350) deg2rad(350); %Axis 4 0054 deg2rad(-119) deg2rad(150); %Axis 5 0055 deg2rad(-350) deg2rad(350)]; %Axis 6 0056 0057 %maximum absolute speed of each joint rad/s or m/s 0058 robot.velmax = [3.2; %Axis 1, m/s 0059 deg2rad(126); %Axis 2, rad/s 0060 deg2rad(166); %Axis 3, rad/s 0061 deg2rad(260); %Axis 4, rad/s 0062 deg2rad(245); %Axis 5, rad/s 0063 deg2rad(322)];%Axis 6, rad/s 0064 % end effectors maximum velocity 0065 robot.linear_velmax = 3.2; %m/s 0066 robot.accelmax=robot.velmax/0.1; % 0.1 is here an acceleration time 0067 %base reference system 0068 robot.T0 = eye(4); 0069 0070 % [-1 0 0 0; 0071 % 0 0 1 0; 0072 % 0 1 0 0; 0073 % 0 0 0 1]; 0074 0075 0076 %INITIALIZATION OF VARIABLES REQUIRED FOR THE SIMULATION 0077 %position, velocity and acceleration 0078 robot=init_sim_variables(robot); 0079 0080 % GRAPHICS 0081 robot.graphical.has_graphics=1; 0082 robot.graphical.color = [202, 97, 0]./255; 0083 %for transparency 0084 robot.graphical.draw_transparent=0; 0085 %draw DH systems 0086 robot.graphical.draw_axes=1; 0087 %DH system length and Font size, standard is 1/10. Select 2/20, 3/30 for 0088 %bigger robots 0089 robot.graphical.axes_scale=1; 0090 %adjust for a default view of the robot 0091 robot.axis=[-2 3 -4 4 -4 4]; 0092 %read graphics files 0093 robot = read_graphics(robot); 0094 0095 %DYNAMICS 0096 robot.has_dynamics=0;