%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% PARAMETERS Returns a data structure containing the parameters of the KUKA KR5 scara Z200. Author: Arturo Gil. Universidad Miguel Hernández de Elche. email: arturo.gil@umh.es date: 05/01/2012 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
0001 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 0002 % PARAMETERS Returns a data structure containing the parameters of the 0003 % KUKA KR5 scara Z200. 0004 % 0005 % Author: Arturo Gil. Universidad Miguel Hernández de Elche. 0006 % email: arturo.gil@umh.es date: 05/01/2012 0007 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 0008 0009 0010 % Copyright (C) 2012, by Arturo Gil Aparicio 0011 % 0012 % This file is part of ARTE (A Robotics Toolbox for Education). 0013 % 0014 % ARTE is free software: you can redistribute it and/or modify 0015 % it under the terms of the GNU Lesser General Public License as published by 0016 % the Free Software Foundation, either version 3 of the License, or 0017 % (at your option) any later version. 0018 % 0019 % ARTE is distributed in the hope that it will be useful, 0020 % but WITHOUT ANY WARRANTY; without even the implied warranty of 0021 % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 0022 % GNU Lesser General Public License for more details. 0023 % 0024 % You should have received a copy of the GNU Leser General Public License 0025 % along with ARTE. If not, see <http://www.gnu.org/licenses/>. 0026 function robot = parameters() 0027 0028 robot.DH.theta= '[ q(1) q(2) 0 q(4)]'; 0029 robot.DH.d='[ 0.246 0 -q(3)+0.246 0]'; 0030 robot.DH.a='[ 0.125 0.225 0 0]'; 0031 robot.DH.alpha= '[0 pi pi 0]'; 0032 robot.J=[]; 0033 robot.name= 'KUKA_KR5_scara_R350_Z200'; 0034 0035 robot.inversekinematic_fn = 'inversekinematic_KUKA_KR5_scara_R350_Z200(robot, T)'; 0036 0037 %number of degrees of freedom 0038 robot.DOF = 4; 0039 0040 %rotational: R, translational: T 0041 robot.kind=['R' 'R' 'T' 'R']; 0042 0043 %minimum and maximum rotation angle in rad 0044 robot.maxangle =[deg2rad(-155) deg2rad(155); %Axis 1, minimum, maximum 0045 deg2rad(-145) deg2rad(145); %Axis 2, minimum, maximum 0046 0.046 0.200; %Axis 3, translational, max 200 mm 0047 deg2rad(-358) deg2rad(358)]; %Axis 4 0048 0049 %maximum absolute speed of each joint rad/s or m/s 0050 robot.velmax = [deg2rad(525); %Axis 1, rad/s 0051 deg2rad(525); %Axis 2, rad/s 0052 deg2rad(2); %Axis 3, m/s 0053 deg2rad(2400)]; %Axis 4, rad/s 0054 0055 robot.accelmax=robot.velmax/0.1; % 0.1 is here an acceleration time 0056 % end effectors maximum velocity 0057 robot.linear_velmax = 1.0; %m/s, not specified 0058 0059 %base reference system 0060 robot.T0 = eye(4); 0061 0062 %INITIALIZATION OF VARIABLES REQUIRED FOR THE SIMULATION 0063 %position, velocity and acceleration 0064 robot=init_sim_variables(robot); 0065 robot.path = pwd; 0066 0067 % GRAPHICS 0068 %read graphics files 0069 robot.graphical.has_graphics=1; 0070 robot.graphical.color = [255 20 40]./255; 0071 %for transparency 0072 robot.graphical.draw_transparent=0; 0073 %draw DH systems 0074 robot.graphical.draw_axes=1; 0075 %DH system length and Font size, standard is 1/10. Select 2/20, 3/30 for 0076 %bigger robots 0077 robot.graphical.axes_scale=1; 0078 %adjust for a default view of the robot 0079 robot.axis=[-0.75 0.75 -0.75 0.75 0 0.8]; 0080 robot = read_graphics(robot); 0081 0082 %DYNAMICS 0083 robot.has_dynamics=0;