%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% PARAMETERS Returns a data structure containing the parameters of the KUKA KR90 R2700 pro. Author: Arturo Gil. Universidad Miguel Hern�ndez de Elche. email: arturo.gil@umh.es date: 08/01/2012 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
0001 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 0002 % PARAMETERS Returns a data structure containing the parameters of the 0003 % KUKA KR90 R2700 pro. 0004 % 0005 % Author: Arturo Gil. Universidad Miguel Hern�ndez de Elche. 0006 % email: arturo.gil@umh.es date: 08/01/2012 0007 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 0008 0009 0010 % Copyright (C) 2012, by Arturo Gil Aparicio 0011 % 0012 % This file is part of ARTE (A Robotics Toolbox for Education). 0013 % 0014 % ARTE is free software: you can redistribute it and/or modify 0015 % it under the terms of the GNU Lesser General Public License as published by 0016 % the Free Software Foundation, either version 3 of the License, or 0017 % (at your option) any later version. 0018 % 0019 % ARTE is distributed in the hope that it will be useful, 0020 % but WITHOUT ANY WARRANTY; without even the implied warranty of 0021 % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 0022 % GNU Lesser General Public License for more details. 0023 % 0024 % You should have received a copy of the GNU Leser General Public License 0025 % along with ARTE. If not, see <http://www.gnu.org/licenses/>. 0026 function robot = parameters() 0027 0028 robot.DH.theta= '[q(1) q(2)-pi/2 q(3) q(4) q(5) q(6)]'; 0029 robot.DH.d='[0.675 0 0 -1.2 0 -0.215]'; 0030 robot.DH.a='[0.350 1.150 -0.041 0 0 0]'; 0031 robot.DH.alpha= '[-pi/2 0 pi/2 -pi/2 pi/2 pi]'; 0032 robot.J=[]; 0033 robot.name= 'KUKA_KR90_R2700_pro'; 0034 0035 robot.inversekinematic_fn = 'inversekinematic_kuka_kr90_R2700_pro(robot, T)'; 0036 0037 %number of degrees of freedom 0038 robot.DOF = 6; 0039 0040 %rotational: 0, translational: 1 0041 robot.kind=['R' 'R' 'R' 'R' 'R' 'R']; 0042 0043 %minimum and maximum rotation angle in rad 0044 robot.maxangle =[deg2rad(-185) deg2rad(185); %Axis 1, minimum, maximum 0045 deg2rad(-50) deg2rad(140); %Axis 2, minimum, maximum 0046 deg2rad(-120) deg2rad(155); %Axis 3 0047 deg2rad(-350) deg2rad(350); %Axis 4 0048 deg2rad(-125) deg2rad(125); %Axis 5 0049 deg2rad(-350) deg2rad(350)]; %Axis 6 0050 0051 %maximum absolute speed of each joint rad/s or m/s 0052 robot.velmax = [deg2rad(136); %Axis 1, rad/s 0053 deg2rad(130); %Axis 2, rad/s 0054 deg2rad(120); %Axis 3, rad/s 0055 deg2rad(292); %Axis 4, rad/s 0056 deg2rad(258); %Axis 5, rad/s 0057 deg2rad(284)];%Axis 6, rad/s 0058 % end effectors maximum velocity 0059 robot.linear_velmax = 2.0; %m/s 0060 robot.accelmax=robot.velmax/0.1; % 0.1 is here an acceleration time 0061 %base reference system 0062 robot.T0 = eye(4); 0063 0064 %INITIALIZATION OF VARIABLES REQUIRED FOR THE SIMULATION 0065 %position, velocity and acceleration 0066 robot=init_sim_variables(robot); 0067 robot.path = pwd; 0068 0069 % GRAPHICS 0070 robot.graphical.has_graphics=1; 0071 robot.graphical.color = [25 20 40]; 0072 %for transparency 0073 robot.graphical.draw_transparent=0; 0074 %draw DH systems 0075 robot.graphical.draw_axes=1; 0076 %DH system length and Font size, standard is 1/10. Select 2/20, 3/30 for 0077 %bigger robots 0078 robot.graphical.axes_scale=1; 0079 %adjust for a default view of the robot 0080 robot.axis=[-2 2 -2 2 0 2.5]; 0081 %read graphics files 0082 robot = read_graphics(robot); 0083 0084 %DYNAMICS 0085 robot.has_dynamics=0;