%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% PARAMETERS Returns a data structure containing the parameters of the KUKA KR30 L16 2 Author: Arturo Gil. Universidad Miguel Hern�ndez de Elche. email: arturo.gil@umh.es date: 08/01/2012 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
0001 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 0002 % PARAMETERS Returns a data structure containing the parameters of the 0003 % KUKA KR30 L16 2 0004 % 0005 % Author: Arturo Gil. Universidad Miguel Hern�ndez de Elche. 0006 % email: arturo.gil@umh.es date: 08/01/2012 0007 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 0008 0009 0010 % Copyright (C) 2012, by Arturo Gil Aparicio 0011 % 0012 % This file is part of ARTE (A Robotics Toolbox for Education). 0013 % 0014 % ARTE is free software: you can redistribute it and/or modify 0015 % it under the terms of the GNU Lesser General Public License as published by 0016 % the Free Software Foundation, either version 3 of the License, or 0017 % (at your option) any later version. 0018 % 0019 % ARTE is distributed in the hope that it will be useful, 0020 % but WITHOUT ANY WARRANTY; without even the implied warranty of 0021 % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 0022 % GNU Lesser General Public License for more details. 0023 % 0024 % You should have received a copy of the GNU Leser General Public License 0025 % along with ARTE. If not, see <http://www.gnu.org/licenses/>. 0026 function robot = parameters() 0027 0028 robot.DH.theta= '[-q(1) q(2)-pi/2 q(3) q(4) q(5) q(6)]'; 0029 robot.DH.d='[0.815 0 0 1.545 0 0.158]'; 0030 robot.DH.a='[0.350 1.2 0.145 0 0 0]'; 0031 robot.DH.alpha= '[-pi/2 0 -pi/2 pi/2 -pi/2 0]'; 0032 robot.J=[]; 0033 robot.name= 'KUKA_KR30_L16_2'; 0034 0035 robot.inversekinematic_fn = 'inversekinematic_kuka_kr_30_L16_2(robot, T)'; 0036 0037 %number of degrees of freedom 0038 robot.DOF = 6; 0039 0040 %rotational: 0, translational: 1 0041 robot.kind=['R' 'R' 'R' 'R' 'R' 'R']; 0042 0043 %minimum and maximum rotation angle in rad 0044 robot.maxangle =[deg2rad(-185) deg2rad(185); %Axis 1, minimum, maximum 0045 deg2rad(-135) deg2rad(35); %Axis 2, minimum, maximum 0046 deg2rad(-120) deg2rad(158); %Axis 3 0047 deg2rad(-350) deg2rad(350); %Axis 4 0048 deg2rad(-130) deg2rad(130); %Axis 5 0049 deg2rad(-350) deg2rad(350)]; %Axis 6 0050 0051 %maximum absolute speed of each joint rad/s or m/s 0052 robot.velmax = [deg2rad(100); %Axis 1, rad/s 0053 deg2rad(80); %Axis 2, rad/s 0054 deg2rad(80); %Axis 3, rad/s 0055 deg2rad(230); %Axis 4, rad/s 0056 deg2rad(165); %Axis 5, rad/s 0057 deg2rad(249)];%Axis 6, rad/s 0058 % end effectors maximum velocity 0059 robot.linear_velmax = 2.0; %m/s 0060 robot.accelmax=robot.velmax/0.1; % 0.1 is here an acceleration time 0061 %base reference system 0062 robot.T0 = eye(4); 0063 0064 %INITIALIZATION OF VARIABLES REQUIRED FOR THE SIMULATION 0065 %position, velocity and acceleration 0066 robot=init_sim_variables(robot); 0067 0068 % GRAPHICS 0069 robot.graphical.has_graphics=1; 0070 robot.graphical.color = [200 20 40]./255; 0071 %for transparency 0072 robot.graphical.draw_transparent=0; 0073 %draw DH systems 0074 robot.graphical.draw_axes=1; 0075 %DH system length and Font size, standard is 1/10. Select 2/20, 3/30 for 0076 %bigger robots 0077 robot.graphical.axes_scale=1; 0078 %adjust for a default view of the robot 0079 robot.axis=[-2 2 -2 2 0 2.5]; 0080 %read graphics files 0081 robot = read_graphics(robot); 0082 0083 %DYNAMICS 0084 robot.has_dynamics=0;