%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% PARAMETERS Returns a data structure containing the parameters of the Mitsubishi RV-6S robot with 6DOF. Authors: Paloma Garau de Meer Francisco Muñoz García %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
0001 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 0002 % PARAMETERS Returns a data structure containing the parameters of the 0003 % Mitsubishi RV-6S robot with 6DOF. 0004 % 0005 % Authors: Paloma Garau de Meer 0006 % Francisco Muñoz García 0007 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 0008 0009 % Copyright (C) 2012, by Arturo Gil Aparicio 0010 % 0011 % This file is part of ARTE (A Robotics Toolbox for Education). 0012 % 0013 % ARTE is free software: you can redistribute it and/or modify 0014 % it under the terms of the GNU Lesser General Public License as published by 0015 % the Free Software Foundation, either version 3 of the License, or 0016 % (at your option) any later version. 0017 % 0018 % ARTE is distributed in the hope that it will be useful, 0019 % but WITHOUT ANY WARRANTY; without even the implied warranty of 0020 % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 0021 % GNU Lesser General Public License for more details. 0022 % 0023 % You should have received a copy of the GNU Leser General Public License 0024 % along with ARTE. If not, see <http://www.gnu.org/licenses/>. 0025 function robot = parameters() 0026 0027 robot.name='Mitsubishi RV-6S 6DOF robotic arm'; 0028 0029 %Path where everything is stored for this robot 0030 %robot.path = 'robots/mitsubishi/rv-6s'; 0031 0032 %kinematic data 0033 robot.DH.theta= '[q(1) q(2)-pi/2 q(3) q(4) q(5) q(6)]'; 0034 robot.DH.d='[0.350 0 0 0.315 0 0.085]'; 0035 robot.DH.a='[0.085 0.280 0.100 0 0 0]'; 0036 robot.DH.alpha= '[-pi/2 0 -pi/2 pi/2 -pi/2 0]'; 0037 0038 %number of degrees of freedom 0039 robot.DOF = 6; 0040 0041 %rotational: R, translational: T 0042 robot.kind=['R' 'R' 'R' 'R' 'R' 'R']; 0043 0044 %Jacobian matrix 0045 robot.J=[]; 0046 0047 0048 %Function name to compute inverse kinematic 0049 % options(1)=1 elbow up solution 0050 % options(1)=-1 elbow down solution 0051 % options(2)=1 wrist up solution 0052 % options(2)=-1 wrist down solution 0053 robot.inversekinematic_fn = 'inversekinematic_rv_6s(robot, T)'; 0054 0055 0056 0057 %minimum and maximum rotation angle in rad 0058 robot.maxangle =[deg2rad(-170) deg2rad(170); %Axis 1, minimum, maximum 0059 deg2rad(-92) deg2rad(135); %Axis 2, minimum, maximum 0060 deg2rad(-107) deg2rad(166); %Axis 3 0061 deg2rad(-160) deg2rad(136); %Axis 4 0062 deg2rad(-120) deg2rad(120); %Axis 5 0063 deg2rad(-360) deg2rad(360)]; %Axis 6 0064 0065 %maximum absolute speed of each joint rad/s or m/s 0066 robot.velmax = [deg2rad(401); %Axis 1, rad/s 0067 deg2rad(321); %Axis 2, rad/s 0068 deg2rad(401); %Axis 3, rad/s 0069 deg2rad(352); %Axis 4, rad/s 0070 deg2rad(450); %Axis 5, rad/s 0071 deg2rad(660)];%Axis 6, rad/s 0072 % end effectors maximum velocity 0073 robot.linear_velmax = 9.3; %m/s 0074 0075 robot.accelmax=robot.velmax/0.1; % 0.1 is here an acceleration time 0076 %base reference system 0077 robot.T0 = eye(4); 0078 0079 %INITIALIZATION OF VARIABLES REQUIRED FOR THE SIMULATION 0080 %position, velocity and acceleration 0081 robot=init_sim_variables(robot); 0082 0083 0084 % GRAPHICS 0085 robot.graphical.has_graphics=1; 0086 robot.graphical.color = [255 20 40]./255; 0087 %for transparency 0088 robot.graphical.draw_transparent=0; 0089 %draw DH systems 0090 robot.graphical.draw_axes=1; 0091 %DH system length and Font size, standard is 1/10. Select 2/20, 3/30 for 0092 %bigger robots 0093 robot.graphical.axes_scale=1; 0094 %adjust for a default view of the robot 0095 robot.axis=[-1.5 1.5 -1.5 1.5 0 1.5]; 0096 %read graphics files 0097 robot = read_graphics(robot); 0098 0099 %DYNAMICS 0100 robot.has_dynamics=0;